Нарушение ранних этапов внимания и обработки информации при импульсивном агрессивном поведении: акустическая стартл-реакция и торможение П50

Полный текст:   Только для подписчиков

Рекомендуемое оформление библиографической ссылки:

Сторожева З.И., Телешева К.Ю., Сафуанов Ф.С., Киренская А.В. Нарушение ранних этапов внимания и обработки информации при импульсивном агрессивном поведении: акустическая стартл-реакция и торможение П50 // Российский психиатрический журнал. 2021. №6. С. 33-42.

Аннотация

В одномоментном ретроспективном исследовании с целью выявления особенностей непроизвольной обработки сенсорной и сенсомоторной информации у лиц с импульсивным агрессивным поведением оценивали предстимульную модификацию акустической стартл-реакции и торможение вызванного потенциала Р50 у 23 человек, совершивших импульсивно-агрессивные преступления (основная группа), и у 29 социально адаптированных добровольцев. В основной группе выявлено повышение латентного периода стартл-реакции, дефицит модификации её амплитуды и латентности предстимулом, снижение амплитуды и удлинение латентности Р50 на первый стимул в паре, дефицит торможения Р50. С использованием найденных различий как предикторов была получена диагностическая модель для выявления риска импульсивной агрессии с уровнем точности 88%.

Ключевые слова импульсивное агрессивное поведение; акустическая стартл-реакция; предстимульное торможение; предстимульная фасилитация; сенсомоторная фильтрация; сенсорная фильтрация; вызванный слуховой потенциал Р50

Литература

1. Barratt ES, Stanford MS, Dowdy L, et al. Impulsive and premeditated aggression: a factor analysis of self-reported acts. Psychiatry Res. 1999;86(2):163–73. DOI: https://doi.org/10.1016/S0165-1781(99)00024-4 2. Berkowitz L. Aggression: its causes, consequences, and control. NY: McGraw-Hill; 1993. p. 2–9 DOI: https://doi.org/10.1002/1098-2337(1994)20:6<464::AID-AB2480200608>3.0.CO 3. Swogger MT, Walsh Z, Christie M, et al. Impulsive versus premeditated aggression in the prediction of violent criminal recidivism. Aggressive Behavior. 2915;41(4):346–52. DOI: https://doi.org/10.1002/ab.21549 4. Barratt ES. Impulsiveness and aggression. In: J Monahan, HJ Steadman, editors. Violence and mental disorder: Developments in risk assessment. Chicago, IL: University of Chicago Press; 1994. p. 61–79. 5. Kockler TR, Stanford MS, Nelson CE, et al. Characterizing aggressive behavior in a forensic population. Am J Orthopsychiatry. 2006;76(1):80–5. DOI: https://doi.org/10.1037/0002-9432.76.1.80 6. Stahl SM. Deconstructing violence as a medical syndrome: mapping psychotic, impulsive, and predatory subtypes to malfunctioning brain circuits. CNS Spectrums. 2014;19(5):357–65. DOI: https://doi.org/10.1017/S1092852914000522 7. Beyer F, Münte TF, Göttlich M, et al. Orbitofrontal Cortex Reactivity to Angry Facial Expression in a Social Interaction Correlates with Aggressive Behavior. Cerebral Cortex. 2015;25(9):3057–63. DOI: https://doi.org/10.1093/cercor/bhu101 8. McCloskey MS, Phan KL, Angstadt M, et al. Amygdala hyperactivation to angry faces in intermittent explosive disorder. J Psychiatr Res. 2016;79:34–41. DOI: https://doi.org/10.1016/j.jpsychires.2016.04.006 9. Glenn AL, Yang Y. The potential role of the striatum in antisocial behavior and psychopathy. Biol Psychiatry. 2012;72(10):817–22. DOI: https://doi.org/10.1016/j.biopsych.2012.04.027 10. da Cunha-Bang S, Fisher PM, Hjordt LV, et al. Violent offenders respond to provocations with high amygdala and striatal reactivity. Soc Cogn Affect Neurosci. 2017;12(5):802–10. DOI: https://doi.org/10.1093/scan/nsx006 11. Rosell DR, Siever LJ. The neurobiology of aggression and violence. CNS Spectrums. 2015;20(3):254–79. DOI: https://doi.org/10.1017/S109285291500019X 12. Barratt ES, Stanford MS, Kent TA, et al. Neuropsychological and cognitive psychophysiological substrates of impulsive aggression. Biol Psychiatry. 1997;41:1045–61. DOI: https://doi.org/10.1016/S0006-3223(96)00175-8 13. Quinsey VL, Harris GT, Rice ME, et al. Violent offenders: Appraising and managing risk. Washington, DC: American Psychological Association; 1998. 356 р. 14. Volavka J. The neurobiology of violence: an update. J Neuropsychiatry Clin Neurosci. 1999;11(3):307–14. DOI: https://doi.org/10.1176/jnp.11.3.307 15. Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl). 2001;156(2–3):234–58. DOI: https://doi.org/10.1007/s002130100810 16. Wynn JK, Dawson ME, Schell AM, et al. Prepulse Facilitation and Prepulse Inhibition in Schizophrenia Patients and Their Unaffected Siblings. Biol Psychiatry. 2004;55:518–23. DOI: https://doi.org/10.1016/j.biopsych.2003.10.018 17. Swerdlow NR, Braff DL, Geyer MA. Sensorimotor gating of the startle reflex: what we said 25 years ago, what has happened since then, and what comes next. J Psychopharmacol. 2016;30(11):1072–81. DOI: https://doi.org/10.1177/0269881116661075 18. Freedman R, Waldo M, Bickford-Wimer P, et al. Elementary neuronal dysfunctions in schizophrenia. Schizoph Res. 1991;4(2):233–43. DOI: https://doi.org/10.1016/0920-9964(91)90035-P 19. Kumari V, Das M, Hodgins S, et al. Association between violent behaviour and impaired prepulse inhibition of the startle response in antisocial personality disorder and schizophrenia. Behav Brain Res. 2005;158(1):159–66. DOI: https://doi.org/10.1016/j.bbr.2004.08.021 20. Fresán A, Apiquian R, García-Anaya M, et al. The P50 auditory evoked potential in violent and non-violent patients with schizophrenia. Schizophr Res. 2007;97(1–3):128–36. DOI: https://doi.org/10.1016/j.schres.2007.09.017 21. Grootens KP, van Luijtelaar G, Miller CA. Increased p50 gating but intact prepulse inhibition in borderline personality disorder. J Neuropsychiatry Clin Neurosci. 2008;20(3):348–56. DOI: https://doi.org/10.1176/appi.neuropsych.20.3.348 22. Lijffijt M, Cox B, Acas MD, et al. Differential relationships of impulsivity or antisocial symptoms on P50, N100, or P200 auditory sensory gating in controls and antisocial personality disorder. J Psychiatr Res. 2012;46(6):743–50. DOI: https://doi.org/10.1016/j.jpsychires.2012.03.001 23. Storozheva ZI, Kirenskaya AV, Lazarev IE, et al. Prepulse modification of the acoustic startle reaction in healthy subjects and patients with schizophrenia. Neurosci Behav Physiol. 2012;42(2):128–32. DOI: https://doi.org/10.1007.s11055-011-9545-z 24. Nagamoto HT, Adler LE, Waldo MC, et al. Gating of auditory response in schizophrenics and normal controls. Effects of recording site and stimulation interval on the P50 wave. Schizophr Res. 1991;4(1):31–40. DOI: https://doi.org/10.1016/0920-9964(91)90007-E 25. Smith AK, Jovanovic T, Kilaru V, et al. A Gene-Based Analysis of Acoustic Startle Latency. Front Psychiatry. 2017;(8):117. DOI: https://doi.org/10.3389/fpsyt.2017.00117 26. Massa N, Owens AV, Harmon W, et al. Relationship of prolonged acoustic startle latency to diagnosis and biotype in the bipolar-schizophrenia network on intermediate phenotypes (BeSNIP) cohort. Schizophr Res. 2020;216:357–66. DOI: https://doi.org/10.1016/j.schres.2019.11.013 27. Takahashi H, Komatsu S, Nakahachi T, et al. Relationship of the Acoustic Startle Response and Its Modulation to Emotional and Behavioral Problems in Typical Development Children and Those with Autism Spectrum Disorders. J Autism Dev Disord. 2016;46:534–43. DOI: https://doi.org/10.1007/s10803-015-2593-4 28. Tantillo M, Kesick CM, Hynd GW, et al. The effects of exercise on children with attention-deficit hyperactivity disorder. Med Sci Sports Exerc. 2002;34(2):203–12. DOI: https://doi.org/10.1097/00005768-200202000-00004 29. Kois LE, Blakey SM, Gardner BO, et al. Neuropsychological correlates of self-reported impulsivity and informant-reported maladaptive behaviour among veterans with posttraumatic stress disorder and traumatic brain injury history. Brain Injury. 2018;32(12):1484–91. DOI: https://doi.org/10.1080/02699052.2018.1497205 30. Swerdlow NR, Braff DL, Geyer MA. Cross-species studies of sensorimotor gating of the startle reflex. Ann NY Acad Sci. 1999;877:202–16. DOI: https://doi.org/10.1111/j.1749-6632.1999.tb09269.x 31. Roussos P, Giakoumaki SG, Bitsios P. The dopamine D(3) receptor Ser9Gly polymorphism modulates prepulse inhibition of the acoustic startle reflex. Biol Psychiatry. 2008;64(3):235–40. DOI: https://doi.org/10.1016/j.biopsych.2008.01.020 32. Ashare RL, Hawk LW, Mazzullo RJ. Motivated attention: incentive effects on attentional modification of prepulse inhibition. Psychophysiology. 2007;44(6):839–45. DOI: https://doi.org/10.1111/j.1469-8986.2007.00563.x 33. Hawk LW, Pelham WE, Yartz AR. Attentional modification of short-lead prepulse inhibition and long-lead prepulse facilitation of acoustic startle among preadolescent boys. Psychophysiology. 2002;39(3):333–9. DOI: https://doi.org/10.1017/S0048577201393071 34. Lehtinen EK, Ucar E, Glenthøj BY, et al. Effects of melatonin on prepulse inhibition, habituation and sensitization of the human startle reflex in healthy volunteers. Psychiatry Res. 2014;216(3):418–23. DOI: https://doi.org/10.1016/j.psychres.2014.02.030 35. Houston RJ, Stanford MS. Mid-latency evoked potentials in self-reported impulsive aggression. Int J Psychophysiol. 2001;40(1):1–15. DOI: https://doi.org/10.1016/S0167-8760(00)00120-3 36. Mathias CW, Stanford MS. P300 under standard and surprise conditions in self-reported impulsive aggression. Prog Neuropsychopharmacol Biol Psychiatry. 1999;23(6):1037–51. DOI: https://doi.org/10.1016/S0278-5846(99)00053-6 37. Swerdlow NR, Talledo JA. Effects of the first prepulse on the blink response to a startling noise. Behav Neurosci. 2009;123(3):607–13. DOI: https://doi.org/10.1037/a0015064 38. Green DB, Mattingly MM, Ye Y, et al. Brief Stimulus Exposure Fully Remediates Temporal Processing Deficits Induced by Early Hearing Loss. J Neurosci. 2017;37(32):7759–71. DOI: https://doi.org/10.1523/JNEUROSCI.0916-17.2017 39. Kirenskaya AV, Storozheva ZI, Ilyushina EA, et al. [The Comparative study of the early stages of sensory and sensory-motor information processing in aggressive and non-aggressive schizophrenic patients]. Zh Nevropatol Psikhiatr Im SS Korsakova. 2020;2:45–52. (In Russ.) DOI: https://doi.org/10.17116/jnevro202012002145 40. Swann AC, Lijffijt M, Lane SD, et al. Pre-attentive information processing and impulsivity in bipolar disorder. J Psychiatr Res. 2013;47(12):1917–24. DOI: https://doi.org/10.1016/j.jpsychires.2013.08.018 41. Yang Y, Raine A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Research. 2009;174(2):81–8. DOI: https://doi.org/10.1016/j.pscychresns 42. Korzyukov O, Pflieger ME, Wagner M, et al. Generators of the intracranial P50 response in auditory sensory gating. Neuroimage. 2007;35:814–26. DOI: https://doi.org/10.1016/j.neuroimage.2006.12.011 43. Mayer AR, Hanlon FM, Franco AR, et al. The neural networks underlying auditory sensory gating. Neuroimage. 2008;44(1):182–9. DOI: https://doi.org/10.1016/j.neuroimage.2008.08.025 44. Weiland BJ, Boutros NN, Moran JM, et al. Evidence for a frontal cortex role in both auditory and somatosensory habituation: a MEG study. Neuroimage. 2008;42(2):827–35. DOI: https://doi.org/10.1016/j.neuroimage.2008.05.042 45. Knight RT, Staines WR, Swick D, et al. Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol (Amst). 1999;101 (2–3):159–78. DOI: https://doi.org/10.1016/s0001-6918(99)00004-9



DOI: http://dx.doi.org/10.47877/1560-957Х-2021-10604

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM