Основные сигнальные пути, вовлеченные в патогенез онкологических заболеваний и психических нарушений
Полный текст:
Только для подписчиков
|
Рекомендуемое оформление библиографической ссылки:
Кит О.И., Владимирова Л.Ю., Шпорт С.В., Льянова А.А., Бобров А.Е., Геворкян Э.Ю., Зайцева А.Д. Основные сигнальные пути, вовлеченные в патогенез онкологических заболеваний и психических нарушений // Российский психиатрический журнал. 2023. №5. С. 66-80.
В научном обзоре с целью освещения смежных проблем в онкологии и психиатрии с позиции особенностей генетических, молекулярных и клеточных факторов, связанных с психическими заболеваниями и раком, а также изучения возможностей использования в психиатрии достижений в персонализированной онкологии, рассмотрены различные молекулярные мишени с доказанным участием в возникновении онкологических заболеваний в плане их потенциального значения при развитии психических расстройств и клинической значимости прецизионного генетического тестирования в психиатрии. Представлены сигнальные пути МАРК, PI3K/AKT/mTOR, VEGF, МЕТ, NOTCH, а также герминальные мутации семейства BRCA. Наряду с этим обсуждается ряд проблем, которые необходимо преодолеть в будущем в прецизионной психиатрии при применении геномного тестирования, такие как обширная полигенность и плейотропия. Одним из шагов на этом пути может быть использование подходов и полученных знаний в молекулярной онкологии.
Ключевые слова онкология; психиатрия; онкопсихиатрия; NGS; сигнальные пути; МАРК; PI3K/AKT/mTOR; VEGF; BRCA; NOTCH; MET; депрессия; биполярное аффективное расстройство; расстройство аутистического спектра; полигенность; плейотропия; прецизионная психиатрия
1. Sung H, Ferlay J, Siegel RL, еt al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. DOI: https://doi.org/10.3322/caac.21660 2. Grassi L. Psychiatric and psychosocial implications in cancer care: The agenda of psycho-oncology. Epidemiol Psychiatr Sci. 2020;29:e89. DOI: https://doi.org/10.1017/S2045796019000829 3. Xu JL, Guo Y. Identification of Gene Loci That Overlap Between Mental Disorders and Poor Prognosis of Cancers. Front Psychiatry. 2021;12:678943. DOI: https://doi.org/10.3389/fpsyt.2021.678943 4. Caruso R, Nanni MG, Riba MB, еt al. The burden of psychosocial morbidity related to cancer: patient and family issues. Int Rev Psychiatry. 2017;29(5):389–402. DOI: https://doi.org/10.1080/09540261.2017.1288090 5. Shi W, Shen Z, Wang S. еt al. Barriers to Professional Mental Health Help-Seeking Among Chinese Adults: A Systematic Review. Front Psychiatry. 2020;11:442. DOI: https://doi.org/10.3389/fpsyt.2020.00442 6. Nohr L, Lorenzo Ruiz A, Sandoval Ferrer JE, еt al. Mental health stigma and professional help-seeking attitudes a comparison between Cuba and Germany. PLoS One. 2021;16(2):e0246501. DOI: https://doi.org/10.1371/journal.pone.0246501 7. Henson KE, Brock R, Charnock J. еt al. Risk of Suicide After Cancer Diagnosis in England. JAMA Psychiatry. 2019;76(1):51–60. DOI: https://doi.org/10.1001/jamapsychiatry.2018.3181 8. Abecasis GR, Adkins DE, Agrawal A, еt al. Meta-analysis of Genome-wide Association Studies for Neuroticism, and the Polygenic Association With Major Depressive Disorder. JAMA Psychiatry. 2015;72(7):642–50. DOI: https://doi.org/10.1001/jamapsychiatry.2015.0554 9. Hoffman DL, Dukes EM, Wittchen HU. Human and economic burden of generalized anxiety disorder. Depress Anxiety. 2008;25(1):72–90. DOI: https://doi.org/10.1002/da.20257 10. Chan CM, Wan Ahmad WA, Yusof MM. еt al. Effects of depression and anxiety on mortality in a mixed cancer group: a longitudinal approach using standardised diagnostic interviews. Psychooncology. 2015;24(6):718–25. DOI: https://doi.org/10.1002/pon.3714 11. Kumar D, Dedic N, Flachskamm C, еt al. Modulates Electroencephalographic Rhythm and Rapid Eye Movement Sleep Recovery. Sleep. 2015;38(9):1371–80. DOI: https://doi.org/10.5665/sleep.4972 12. Ojea Ramos S, Feld M, Fustiсana MS. Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace. Front Mol Neurosci. 2022;15:988790. DOI: https://doi.org/10.3389/fnmol.2022.988790 13. Ryu HH, Kang M, Hwang KD, еt al. Neuron type-specific expression of a mutant KRAS impairs hippocampal-dependent learning and memory. Sci Rep. 2020;10(1):17730. DOI: https://doi.org/10.1038/s41598-020-74610-y 14. Ryu HH, Kim T, Kim JW, еt al. Excitatory neuron-specific SHP2-ERK signaling network regulates synaptic plasticity and memory. Sci Signal. 2019;12(571):eaau5755. DOI: https://doi.org/10.1126/scisignal.aau5755 15. Fukushima H, Zhang Y, Kida S. Active Transition of Fear Memory Phase from Reconsolidation to Extinction through ERK-Mediated Prevention of Reconsolidation. J Neurosci. 2021;41(6):1288–300. DOI: https://doi.org/10.1523/JNEUROSCI.1854-20.2020 16. Zamorano C, Fernández-Albert J, Storm DR, еt al. Memory Retrieval Re-Activates Erk1/2 Signaling in the Same Set of CA1 Neurons Recruited During Conditioning. Neuroscience. 2018;370:101–11. DOI: https://doi.org/10.1016/j.neuroscience.2017.03.034 17. Vithayathil J, Pucilowska J, Friel D, еt al. Chronic impairment of ERK signaling in glutamatergic neurons of the forebrain does not affect spatial memory retention and LTP in the same manner as acute blockade of the ERK pathway. Hippocampus. 2017;27(12):1239–49. DOI: https://doi.org/10.1002/hipo.22769 18. Ruscio AM, Stein DJ, Chiu WT, еt al. Еpidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry. 2010;15(1):53–63. DOI: https://doi.org/10.1038/mp.2008.94 19. Papale A, d’Isa R, Menna E, еt al. Severe Intellectual Disability and Enhanced Gamma-Aminobutyric Acidergic Synaptogenesis in a Novel Model of Rare RASopathies. Biol Psychiatry. 2017;81(3):179–92. DOI: https://doi.org/10.1016/j.biopsych.2016.06.016 20. Holter MC, Hewitt LT, Koebele SV, еt al. The Noonan Syndrome-linked Raf1L613V mutation drives increased glial number in the mouse cortex and enhanced learning. PloS Genet. 2019;15(4):e1008108. DOI: https://doi.org/10.1371/journal.pgen.1008108 21. Hoehe MR, Morris-Rosendahl DJ. The role of genetics and genomics in clinical psychiatry. Dialogues Clin Neurosci. 2018;20(3):169–77. DOI: https://doi.org/10.31887/DCNS.2018.20.3/mhoehe 22. Mota JM, Sousa LG, Riechelmann RP. Complications from carcinoid syndrome: review of the current evidence. Ecancermedicalscience. 2016;10:662. DOI: https://doi.org/10.3332/ecancer.2016.662 23. Naser AY, Hameed AN, Mustafa N, еt al. Depression and Anxiety in Patients With Cancer: A Cross-Sectional Study. Front Psychol. 2021;12:585534. DOI: https://doi.org/10.3389/fpsyg.2021.585534 24. Raught B, Peiretti F, Gingras AC, еt al. Phosphorylation of _ukaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 2004;23(8):1761–9. DOI: https://doi.org/10.1038/sj.emboj.7600193 25. Ruggero D, Sonenberg N. The Akt of translational control. Oncogene. 2005;24(50):7426–34. DOI: https://doi.org/10.1038/sj.onc.1209098 26. Leibrock C, Ackermann TF, Hierlmeier M, еt al. Akt2 deficiency is associated with anxiety and depressive behavior in mice. Cell Physiol Biochem. 2013;32(3):766–77. DOI: https://doi.org/10.1159/000354478 27. Rivière JB, Mirzaa GM, O’Roak BJ, еt al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44(8):934–40. DOI: https://doi.org/10.1038/ng.2331 28. Balu DT, Carlson GC, Talbot K. еt al. Akt1 deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus. 2012;22(2):230–40. DOI: https://doi.org/10.1002/hipo.20887 29. Singh T, Poterba T, Curtis D, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604(7906):509–16. DOI: https://doi.org/10.1038/s41586-022-04556-w 30. Bergeron Y, Bureau G, Laurier-Laurin MÉ, et al. Genetic Deletion of Akt3 Induces an Endophenotype Reminiscent of Psychiatric Manifestations in Mice. Front Mol Neurosci. 2017;10:102. DOI: https://doi.org/10.3389/fnmol.2017.00102 31. Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75. DOI: https://doi.org/10.1016/j.pharmthera.2013.12.004 32. Dubovsky SL. The Limitations of Genetic Testing in Psychiatry. Psychother Psychosom. 2016;85(3):129–35. DOI: https://doi.org/10.1159/000443512 33. van Borkulo C, Boschloo L, Borsboom D, et al. Association of Symptom Network Structure With the Course of [corrected] Depression. JAMA Psychiatry. 2015;72(12):1219–26. DOI: https://doi.org/10.1001/jamapsychiatry.2015.2079 34. Keers R, Aitchison KJ. Pharmacogenetics of antidepressant response. Expert Rev Neurother. 2011;11(1):101–5. DOI: https://doi.org/10.1586/ern.10.186 35. Li JZ. Circadian rhythms and mood: opportunities for multi-level analyses in genomics and neuroscience: circadian rhythm dysregulation in mood disorders provides clues to the brain’s organizing principles, and a touchstone for genomics and neuroscience. Bioessays. 2014;36(3):305–15. DOI: https://doi.org/10.1002/bies.201300141 36. Shi F, Wang YC, Zhao TZ, et al. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PloS One. 2012;7(7):e40365. DOI: https://doi.org/10.1371/journal.pone.0040365 37. Xu Q, Liu LZ, Qian X, et al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res. 2012;40(2):761–74. DOI: https://doi.org/10.1093/nar/gkr730 38. Constantino JN, Charman T. Diagnosis of autism spectrum disorder: reconciling the syndrome, its diverse origins, and variation in expression. Lancet Neurol. 2016;15(3):279–91. DOI: https://doi.org/10.1016/S1474-4422(15)00151-9 39. Mouridsen SE, Rich B, Isager T. Risk of cancer in adult people diagnosed with infantile autism in childhood: A longitudinal case control study based on hospital discharge diagnoses. Research in Autism Spectrum Disorders. 2016;23:203–9. DOI: https://doi.org/10.1016/j.rasd.2015.12.010 40. Fu L, Pelicano H, Liu J, et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002;111(1):41–50. DOI: https://doi.org/10.1016/s0092-8674(02)00961-3 41. Jászai J, Schmidt MHH. Trends and Challenges in Tumor Anti-Angiogenic Therapies. Cells. 2019;8(9):1102. DOI: https://doi.org/10.3390/cells8091102 42. Lopes R, Soares R, Figueiredo-Braga M, et al. Schizophrenia and cancer: is angiogenesis a missed link? Life Sci. 2014;97(2):91–5. DOI: https://doi.org/10.1016/j.lfs.2013.12.023 43. Chakroborty D, Sarkar C, Mitra RB, et al. Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res. 2004;10(13):4349–56. DOI: https://doi.org/10.1158/1078-0432.CCR-04-0059 44. Kamradt MC, Mohideen N, Vaughan AT. RU486 increases radiosensitivity and restores apoptosis through modulation of HPV E6/E7 in dexamethasone-treated cervical carcinoma cells. Gynecol Oncol. 2000;77(1):177–82. DOI: https://doi.org/10.1006/gyno.1999.5724 45. Chan MK, Guest PC, Levin Y, et al. Converging evidence of blood-based biomarkers for schizophrenia: an update. Int Rev Neurobiol. 2011;101:95–144. DOI: https://doi.org/10.1016/B978-0-12-387718-5.00005-5 46. Rees E, Owen MJ. Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Med. 2020;12(1):43. DOI: https://doi.org/10.1186/s13073-020-00734-5 47. Burdick KE, DeRosse P, Kane JM, et al. Association of genetic variation in the MET proto-oncogene with schizophrenia and general cognitive ability. Am J Psychiatry. 2010;167(4):436–43. DOI: https://doi.org/10.1176/appi.ajp.2009.09050615 48. Yang X, Liao HY, Zhang HH. Roles of MET in human cancer. Clin Chim Acta. 2022;525:69–83. DOI: https://doi.org/10.1016/j.cca.2021.12.017 49. Zack TI, Schumacher SE, Carter SL, et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet. 2013;45(10):1134–40. DOI: https://doi.org/10.1038/ng.2760 50. Xiu MX, Liu YM, Kuang BH. The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother. 2020;129:110416. DOI: https://doi.org/10.1016/j.biopha.2020.110416 51. Catts VS, Catts SV, O’Toole BI, et al. Cancer incidence in patients with schizophrenia and their first-degree relatives – a meta-analysis. Acta Psychiatr Scand. 2008;117(5):323–36. DOI: https://doi.org/10.1111/j.1600-0447.2008.01163.x 52. Campbell DB, Sutcliffe JS, Ebert PJ, et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA. 2006;103(45):16834–9. DOI: https://doi.org/10.1073/pnas.0605296103 53. Williams HJ, Craddock N, Russo G, et al. Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Hum Mol Genet. 2011;20(2):387–91. DOI: https://doi.org/10.1093/hmg/ddq471 54. Demjaha A, MacCabe JH, Murray RM. How genes and environmental factors determine the different neurodevelopmental trajectories of schizophrenia and bipolar disorder. Schizophr Bull. 2012;38(2):209–14. DOI: https://doi.org/10.1093/schbul/sbr100 55. Liebner S, Plate KH. Differentiation of the brain vasculature: the answer came blowing by the Wnt. J Angiogenes Res. 2010;2:1. DOI: https://doi.org/10.1186/2040-2384-2-1 56. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78. DOI: https://doi.org/10.1038/nature05911 57. Pedroso I, Lourdusamy A, Rietschel M, et al. Common genetic variants and gene-expression changes associated with bipolar disorder are over-represented in brain signaling pathway genes. Biol Psychiatry. 2012;72(4):311–7. DOI: https://doi.org/10.1016/j.biopsych.2011.12.031 58. Quillard T, Coupel S, Coulon F, et al. Impaired Notch4 activity elicits endothelial cell activation and apoptosis: implication for transplant arteriosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(12):2258–65. DOI: https://doi.org/10.1161/ATVBAHA.108.174995 59. Berk M, Kapczinski F, Andreazza AC, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011;35(3):804–17. DOI: https://doi.org/10.1016/j.neubiorev.2010.10.001 60. Vajen B, Rosset M, Wallaschek H, et al. Psychological Distress and Coping Ability of Women at High Risk of Hereditary Breast and Ovarian Cancer before Undergoing Genetic Counseling-An Exploratory Study from Germany. Int J Environ Res Public Health. 2021;18(8):4338. DOI: https://doi.org/10.3390/ijerph18084338 61. Ringwald J, Wochnowski C, Bosse K, et al. Psychological Distress, Anxiety, and Depression of Cancer-Affected BRCA1/2 Mutation Carriers: a Systematic Review. J Genet Couns. 2016;25(5):880–91. DOI: https://doi.org/10.1007/s10897-016-9949-6 62. Zilliacus E, Meiser B, Gleeson M, et al. Are we being overly cautious? A qualitative inquiry into the experiences and perceptions of treatment-focused germline BRCA genetic testing amongst women recently diagnosed with breast cancer. Support Care Cancer. 2012;20(11):2949–58. DOI: https://doi.org/10.1007/s00520-012-1427-6 63. Halbert CH, Stopfer JE, McDonald J, et al. Long-term reactions to genetic testing for BRCA1 and BRCA2 mutations: does time heal women’s concerns? J Clin Oncol. 2011;29(32):4302–6. DOI: https://doi.org/10.1200/JCO.2010.33.1561 64. Bosch N, Junyent N, Gadea N, et al. What factors may influence psychological well being at three months and one year post BRCA genetic result disclosure? Breast. 2012;21(6):755–60. DOI: https://doi.org/10.1016/j.breast.2012.02.004 65. Jaber C, Ralph O, Hamidian Jahromi A. BRCA Mutations and the Implications in Transgender Individuals Undergoing Top Surgery: An Operative Dilemma. Plast Reconstr Surg Glob Open. 2022;10(1):e4012. DOI: https://doi.org/10.1097/GOX.0000000000004012 66. Daly MB, Pilarski R, Yurgelun MB, et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 1.2020. J Natl Compr Canc Netw. 2020;18(4):380–91. DOI: https://doi.org/10.6004/jnccn.2020.0017 67. Brown GR, Jones KT. Incidence of breast cancer in a cohort of 5,135 transgender veterans. Breast Cancer Res Treat. 2015;149(1):191–8. DOI: https://doi.org/10.1007/s10549-014-3213-2 68. Sugiura R, Satoh R, Takasaki T. ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells. 2021;10(10):2509. DOI: https://doi.org/10.3390/cells10102509 69. Zdanov S, Mandapathil M, Abu Eid R, et al. Mutant KRAS Conversion of Conventional T Cells into Regulatory T Cells. Cancer Immunol Res. 2016;4(4):354–65. DOI: https://doi.org/10.1158/2326-6066.CIR-15-0241 70. Burns ZT, Bitterman DS, Perni S, et al. Clinical Characteristics, Experiences, and Outcomes of Transgender Patients With Cancer. JAMA Oncol. 2021;7(1):e205671. DOI: https://doi.org/10.1001/jamaoncol.2020.5671 71. Barthel EM, Werny DM, Hayden LL, et al. Gender Affirming Hormone Replacement for the Adolescent and Young Adult Cancer Survivor with Hypogonadism. J Adolesc Young Adult Oncol. 2020;9(1):128–31. DOI: https://doi.org/10.1089/jayao.2019.0070 72. Borah L, Lane M, Nathan H. Missing, Inconsistent, and Other-A Call to Improve Transgender Representation in Oncology Research. JAMA Oncol. 2023;9(7):891–4. DOI: https://doi.org/10.1001/jamaoncol.2023.1344 73. Faller Dzheral’d M, Shilds D. Molekulyarnaya biologiya kletki: ruk. dlya vrachej. Moscow; 2017. 256 p. 74. Gratten J, Wray NR, Keller MC, et al. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci. 2014;17(6):782–90. DOI: https://doi.org/10.1001/jamaoncol.2023.134410.1038/nn.3708 75. Maheu C, Singh M, Tock WL, et al. Fear of Cancer Recurrence, Health Anxiety, Worry, and Uncertainty: A Scoping Review About Their Conceptualization and Measurement Within Breast Cancer Survivorship Research. Front Psychol. 2021;12:644932. DOI: https://doi.org/10.3389/fpsyg.2021.644932 76. Chang WH, Lai AG. Cumulative burden of psychiatric disorders and self-harm across 26 adult cancers. Nat Med. 2022;28(4):860–70. DOI: https://doi.org/10.1038/s41591-022-01740-3 77. Gillis NK, Innocenti F. Evidence required to demonstrate clinical utility of pharmacogenetic testing: the debate continues. Clin Pharmacol Ther. 2014;96(6):655–7. DOI: https://doi.org/10.1038/clpt.2014.185 78. Kitagishi Y, Kobayashi M, Kikuta K, et al. Roles of PI3K/AKT/GSK3/mTOR Pathway in Cell Signaling of Mental Illnesses. Depress Res Treat. 2012;2012:752563. DOI: https://doi.org/10.1155/2012/752563 79. Walter T, Brixi-Benmansour H, Lombard-Bohas C, et al. New treatment strategies in advanced neuroendocrine tumours. Dig Liver Dis. 2012;44(2):95–105. DOI: https://doi.org/10.1016/j.dld.2011.08.022 80. Merola E, Rinzivillo M, Cicchese N, et al. Digestive neuroendocrine neoplasms: A 2016 overview. Dig Liver Dis. 2016;48(8):829–35. DOI: https://doi.org/10.1016/j.dld.2016.04.008 81. Tsimberidou AM, Skliris A, Valentine A, et al. AKT inhibition in the central nervous system induces signaling defects resulting in psychiatric symptomatology. Cell Biosci. 2022;12(1):56. DOI: https://doi.org/10.1186/s13578-022-00793-8 82. Auerbach RP, Alonso J, Axinn WG, et al. Mental disorders among college students in the World Health Organization World Mental Health Surveys. Psychol Med. 2016;46(14):2955–70. DOI: https://doi.org/10.1017/S0033291716001665 83. Mutshinda CM, Sillanpдд MJ. Extended Bayesian LASSO for multiple quantitative trait loci mapping and unobserved phenotype prediction. Genetics. 2010;186(3):1067–75. DOI: https://doi.org/10.1534/genetics.110.119586 84. Brothers BM, Yang HC, Strunk DR, et al. Cancer patients with major depressive disorder: testing a biobehavioral/cognitive behavior intervention. J Consult Clin Psychol. 2011;79(2):253–60. DOI: https://doi.org/10.1037/a0022566 85. Berardi R, Rinaldi S, Torniai M, et al. Gastrointestinal neuroendocrine tumors: Searching the optimal treatment strategy – A literature review. Crit Rev Oncol Hematol. 2016;98:264–74. DOI: https://doi.org/10.1016/j.critrevonc.2015.11.003 86. Oikonomakis V, Kosma K, Mitrakos A, et al. Recurrent copy number variations as risk factors for autism spectrum disorders: analysis of the clinical implications. Clin Genet. 2016;89(6):708–18. DOI: https://doi.org/10.1111/cge.12740 87. Okada F. Inflammation-related carcinogenesis: current findings in epidemiological trends, causes and mechanisms. Yonago Acta Med. 2014;57(2):65–72. PMID: 25324587 88. Tilot AK, Bebek G, Niazi F, et al. Neural transcriptome of constitutional Pten dysfunction in mice and its relevance to human idiopathic autism spectrum disorder. Mol Psychiatry. 2016;21(1):118–25. DOI: https://doi.org/10.1038/mp.2015.17 89. Wen Y, Herbert MR. Connecting the dots: Overlaps between autism and cancer suggest possible common mechanisms regarding signaling pathways related to metabolic alterations. Med Hypotheses. 2017;103:118–23. DOI: https://doi.org/10.1016/j.mehy.2017.05.004 90. Crawley JN, Heyer WD, LaSalle JM. Autism and Cancer Share Risk Genes, Pathways, and Drug Targets. Trends Genet. 2016;32(3):139–46. DOI: https://doi.org/10.1016/j.tig.2016.01.001 91. Kilincaslan A, Kok BE, Tekturk P, et al. Beneficial Effects of Everolimus on Autism and Attention-Deficit/Hyperactivity Disorder Symptoms in a Group of Patients with Tuberous Sclerosis Complex. J Child Adolesc Psychopharmacol. 2017;27(4):383–8. DOI: https://doi.org/10.1089/cap.2016.0100 92. Naguy A. Psychopharmacotherapy of Attention Deficit-Hyperactivity Disorder in Children with Comorbid Conditions. Pediatr Neurol. 2018;82:7–12. DOI: https://doi.org/10.1016/j.pediatrneurol.2017.09.010 93. Darbro BW, Singh R, Zimmerman MB, et al. Autism Linked to Increased Oncogene Mutations but Decreased Cancer Rate. PloS One. 2016;11(3):e0149041. DOI: https://doi.org/10.1371/journal.pone.0149041 94. Forés-Martos J, Catalá-López F, Sánchez-Valle J, et al. Transcriptomic metaanalyses of autistic brains reveals shared gene expression and biological pathway abnormalities with cancer. Mol Autism. 2019;10:17. DOI: https://doi.org/10.1186/s13229-019-0262-8 95. Wang K, Zhuang Y, Liu C, Li Y. Inhibition of c-Met activation sensitizes osteosarcoma cells to cisplatin via suppression of the PI3K-Akt signaling. Arch Biochem Biophys. 2012;526(1):38–43. DOI: https://doi.org/10.1016/j.abb.2012.07.003
DOI: http://dx.doi.org/10.34757/1560-957X.2023.27.5.008
Метрики статей
Metrics powered by PLOS ALM