Роль метаболитов триптофан-кинуренинового пути, гормонов тестостерона и кортизола, а также полиморфизмов генов моноаминоксидазы А и нейротрофического фактора мозга BDNF в формировании агрессивного поведения

Полный текст:   Только для подписчиков

Рекомендуемое оформление библиографической ссылки:

Байрамова С.П., Павлова О.В., Тарковская К.Ш., Небогина К.А., Шпорт С.В., Павлов К.А. Роль метаболитов триптофан-кинуренинового пути, гормонов тестостерона и кортизола, а также полиморфизмов генов моноаминоксидазы А и нейротрофического фактора мозга BDNF в формировании агрессивного поведения // Российский психиатрический журнал. 2023. №5. С. 24-33.

Аннотация

В научном обзоре с целью исследования молекулярных механизмов ауто- и гетероагрессии рассматриваются перспективы использования генотипирования для определения полиморфизмов генов, ассоциированных с данными психофенотипами. Уделено внимание роли моноаминоксидазы А, серотонина и его метаболитов, гормонов (тестостерона и кортизола), а также нейротрофического фактора мозга BDNF в формировании агрессии. Проведен анализ российских и зарубежных публикаций с целью определения потенциальных диагностических биомаркеров агрессивного поведения.

Ключевые слова агрессия; гетероагрессия; аутоагрессия; моноаминоксидаза; МАО А; серотонин; триптофан, кинуренин; тестостерон; кортизол; нейротрофический фактор мозга; BDNF; TrkA; TrkB

Литература

1. Palumbo S, Mariotti V, Iofrida C, Pellegrini S. Genes and Aggressive Behavior. Epigenetic Mechanisms Underlying Individual Susceptibility to Aversive Environments. Front Behav Neurosci. 2018;12:117. DOI: https://doi.org/10.3389/fnbeh.2018.00117 2. Tiihonen J, Rautiainen MR, Ollila HM, et al. Genetic background of extreme violent behavior. Mol Psychiatry. 2015;20(6):786–92. DOI: https://doi.org/10.1038/mp.2014.130 3. Hjalmarsson R, Lindquist MJ. The origins of intergenerational associations in crime: Lessons from Swedish adoption data. Labour Economics. 2013;20:68–81. DOI: https://doi.org/10.1016/j.labeco.2012.11.001 4. Brunner HG, Nelen M, Breakefield XO, et al. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993;262(5133):578–80. DOI: https://doi.org/10.1126/science.8211186 5. Caspi A, McClay J, Moffitt TE, et al. Role of genotype in the cycle of violence in maltreated children. Science. 2002;297(5582):851–4. DOI: https://doi.org/10.1126/science.1072290 6. Coccaro EF. Impulsive aggression and central serotonergic system function in humans: an example of a dimensional brain-behavior relationship. Int Clin Psychopharmacol. 1992;7(1):3–12. DOI: https://doi.org/10.1097/00004850-199200710-00001 7. Linnoila M, Virkkunen M, Scheinin M, et al. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci. 1983;33(26):2609–14. DOI: https://doi.org/10.1016/0024-3205(83)90344-2 8. Sharma R, Tikka SK, Yadav AK, et al. Cerebrospinal fluid monoamine metabolite concentrations in suicide attempt: A meta-analysis. Asian J Psychiatr. 2021;62:102711. DOI: https://doi.org/10.1016/j.ajp.2021.102711 9. Comai S, Bertazzo A, Vachon J, et al. Tryptophan via serotonin/kynurenine pathways abnormalities in a large cohort of aggressive inmates: markers for aggression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;70:8–16. DOI: https://doi.org/10.1016/j.pnpbp.2016.04.012 10. Coccaro EF, Lee R, Fanning JR, et al. Tryptophan, kynurenine, and kynurenine metabolites: Relationship to lifetime aggression and inflammatory markers in human subjects. Psychoneuroendocrinology. 2016;71:189–96. DOI: https://doi.org/10.1016/j.psyneuen.2016.04.024 11. Horn M, Potvin S, Allaire JF, et al. Male inmate profiles and their biological correlates. Can J Psychiatry. 2014;59(8):441–9. DOI: https://doi.org/10.1177/070674371405900807 12. Feilhauer J, Cima M, Korebrits A, et al. Salivary cortisol and psychopathy dimensions in detained antisocial adolescents. Psychoneuroendocrinology. 2013;38(9):1586–95. DOI: https://doi.org/10.1016/j.psyneuen.2013.01.005 13. Flegr J, Hampl R, Černochová D, et al. The relation of cortisol and sex hormone levels to results of psychological, performance, IQ and memory tests in military men and women. Neuro Endocrinol Lett. 2012;33(2):224–35. PMID: 22592206 14. Moss H, Vanyukov M, Martin C, et al. Salivary cortisol responses and the risk for substance abuse in prepubertal boys. Biol Psychiatry. 1995;38(8):547–55. DOI: https://doi.org/10.1016/0006-3223(94)00382-D 15. Dawes MA, Dorn LD, Moss HB, et al. Hormonal and behavioral homeostasis in boys at risk for substance abuse. Drug Alcohol Depend. 1999;55(1–2):165–76. DOI: https://doi.org/10.1016/s0376-8716(99)00003-4 16. Banerjee A, Singh A, Srivastava P, et al. Effects of chronic bhang (cannabis) administration on the reproductive system of male mice. Birth Defects Res B Dev Reprod Toxicol. 2011;92(3):195–205. DOI: https://doi.org/10.1002/bdrb.20295 17. Silva SM, Santos-Marques MJ, Madeira MD, et al. Sexually dimorphic response of the hypothalamo-pituitary-adrenal axis to chronic alcohol consumption and withdrawal. Brain Res. 2009;1303:61–73. DOI: https://doi.org/10.1016/j.brainres.2009.09.099 18. Bornovalova MA, Lejuez CW, Daughters SB, et al. Impulsivity as a common process across borderline personality and substance use disorders. Clin Psychol Rev. 2005;25(6):790–812. DOI: https://doi.org/10.1016/j.cpr.2005.05.005 19. Evren C, Cınar O, Evren B, et al. Self-mutilative behaviors in male substance-dependent inpatients and relationship with anger and aggression: mediator effect of childhood trauma. Compr Psychiatry. 2012;53(3):252–8. DOI: https://doi.org/10.1016/j.comppsych.2011.04.061 20. Hopley A, Brunelle C. Personality mediators of psychopathy and substance dependence in male offenders. Addict Behav. 2012;37(8):947–55. DOI: https://doi.org/10.1016/j.addbeh.2012.03.031 21. Colucci-D'Amato L, Speranza L, Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int J Mol Sci. 2020;21(20):7777. DOI: https://doi.org/10.3390/ijms21207777 22. Maynard K, Hill J, Calcaterra N, et al. Functional Role of BDNF Production from Unique Promoters in Aggression and Serotonin Signaling. Neuropsychopharmacol. 2016;41:1943–55. DOI: https://doi.org/10.1038/npp.2015.349 23. Kretschmer T, Vitaro F, Barker ED. The Association Between Peer and own Aggression is Moderated by the BDNF Val-met Polymorphism. J Res Adolesc. 2014;24(1):177–85. DOI: https://doi.org/10.1111/jora.12050 24. Hong CJ, Liou YJ, Tsai SJ. Effects of BDNF polymorphisms on brain function and behavior in health and disease. Brain Res Bull. 2011;86(5–6):287–97. DOI: https://doi.org/10.1016/j.brainresbull.2011.08.019 25. Colzato LS, Van der Does AJ, Kouwenhoven C, et al. BDNF Val66Met polymorphism is associated with higher anticipatory cortisol stress response, anxiety, and alcohol consumption in healthy adults. Psychoneuroendocrinology. 2011;36(10):1562–9. DOI: https://doi.org/10.1016/j.psyneuen.2011.04.010 26. Avinun R, Davidov M, Mankuta D, et al. Predicting the use of corporal punishment: Child aggression, parent religiosity, and the BDNF gene. Aggress Behav. 2018;44(2):165–75. DOI: https://doi.org/10.1002/ab.21740 27. Aizawa S, Ishitobi Y, Masuda K, et al. Genetic association of the transcription of neuroplasticity-related genes and variation in stress-coping style. Brain Behav. 2015;5(9):e00360. DOI: https://doi.org/10.1002/brb3.360 28. Ashitomi I. [Examination of physical and psychological health conditions and the influence factors of home helpers]. J UOEH. 2005;27(4):325–38. (In Japanese) DOI: https://doi.org/10.7888/juoeh.27.325 29. Lazarus RS, Folkman S. Stress: appraisal, and coping. New York: Springer Publishing Company; 1984. 141 р. 30. Erbay LG, Karlıdağ R, Oruç M, et al. Association of BDNF / TrkB and NGF / TrkA Levels in Postmortem Brain with Major Depression and Suicide. Psychiatr Danub. 2021;33(4):491–8. DOI: https://doi.org/10.24869/psyd.2021.491 31. Youssef MM, Underwood MD, Huang YY, et al. Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide. Int J Neuropsychopharmacol. 2018;21(6):528–38. DOI: https://doi.org/10.1093/ijnp/pyy008 32. Misztak P, Pańczyszyn-Trzewik P, Nowak G, et al. Epigenetic marks and their relationship with BDNF in the brain of suicide victims. PloS One. 2020;15(9):e0239335. DOI: https://doi.org/10.1371/journal.pone.0239335 33. Roy B, Dwivedi Y. Understanding epigenetic architecture of suicide neurobiology: A critical perspective. Neurosci Biobehav Rev. 2017;72:10–27. DOI: https://doi.org/10.1016/j.neubiorev.2016.10.031 34. Kouter K, Zupanc T, Videtič Paska A. Genome-wide DNA methylation in suicide victims revealing impact on gene expression. J Affect Disord. 2019;253:419–25. DOI: https://doi.org/10.1016/j.jad.2019.04.077 35. Policicchio S, Washer S, Viana J, et al. Genome-wide DNA methylation meta-analysis in the brains of suicide completers. Transl Psychiatry. 2020;10(1):69. DOI: https://doi.org/10.1038/s41398-020-0752-7 36. Murphy TM, Crawford B, Dempster EL, et al. Methylomic profiling of cortex samples from completed suicide cases implicates a role for PSORS1C3 in major depression and suicide. Transl Psychiatry. 2017;7(1):e989. DOI: https://doi.org/10.1038/tp.2016.249 37. Poulter MO, Du L, Weaver ICG, et al. GABAA receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biol Psychiatry. 2008;64(8):645–52. DOI: https://doi.org/10.1016/j.biopsych.2008.05.028 38. McGowan PO, Sasaki A, D'Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12(3):342–8. DOI: https://doi.org/10.1038/nn.2270 39. Labonté B, Suderman M, Maussion G, et al. Genome-wide epigenetic regulation by early-life trauma. Arch Gen Psychiatry. 2012;69(7):722–31. DOI: https://doi.org/10.1001/archgenpsychiatry.2011.2287 40. Fiori LM, Bureau A, Labbe A, et al. Global gene expression profiling of the polyamine system in suicide completers. Int J Neuropsychopharmacol. 2011;14(5):595–605. DOI: https://doi.org/10.1017/S1461145710001574 41. Bani-Fatemi A, Howe AS, Matmari M, et al. Interaction between Methylation and CpG Single-Nucleotide Polymorphisms in the HTR2A Gene: Association Analysis with Suicide Attempt in Schizophrenia. Neuropsychobiology. 2016;73(1):10–5. DOI: https://doi.org/10.1159/000441191 42. Merjonen P, Keltikangas-Järvinen L, Jokela M, et al. Hostility in adolescents and adults: a genome-wide association study of the Young Finns. Transl Psychiatry. 2011;1(6):e11. DOI: https://doi.org/10.1038/tp.2011.13



DOI: http://dx.doi.org/10.34757/1560-957X.2023.27.5.003

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM