Цитокины и их роль в патогенезе, клинической гетерогенности шизофрении и ответе на антипсихотическую терапию
Полный текст:
Только для подписчиков
|
Рекомендуемое оформление библиографической ссылки:
Иванова С.А., Бойко А.С., Бохан Н.А. Цитокины и их роль в патогенезе, клинической гетерогенности шизофрении и ответе на антипсихотическую терапию // Российский психиатрический журнал. 2024. №3. С. 81-91.
В научном обзоре с целью систематизации современных представлений относительно потенциальной роли цитокинов в патогенезе шизофрении, их изменений при первом психотическом эпизоде и хронической шизофрении, особенностей содержания при различных типах течения, ведущей клинической симптоматики и длительности заболевания проведен анализ российских и зарубежных исследований за последние 15 лет по электронным информационным ресурсам (библиотека Elsevier, PubMed, NCBI, Google Scholar, eLIBRARY). Особое внимание уделено влиянию антипсихотиков, применяемых для фармакотерапии, на динамику цитокинов. Анализируется участие маркеров иммуновоспаления в ответе на антипсихотическую терапию и развитии лекарственно-индуцированных побочных эффектов психофармакотерапии. В заключение представлены основные перспективы и направления дальнейших исследований.
Ключевые слова шизофрения; цитокины; антипсихотическая терапия
1. Klyushnik TP, Brusov OS, Burbaeva GSh, Kolyaskina GI. Sovremennyi vzglyad na osnovnye patogeneticheskie gipotezy shizofrenii. Psikhiatriya [Psychiatry (Moscow)]. 2010;1(43):7–13. (In Russ.) 2. Ivanova SA, Bokhan NA, Semke AV. Osnovnye gipotezy patogeneza shizofrenii: ekskurs v problemu. In: Biologicheskie markery shizofrenii: poisk i klinicheskoe primenenie. NA Bokhan, SA Ivanova, editors. Novosibirsk; 2017. р. 9–22. (In Russ.) 3. Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2023;10(120):110626. DOI: https://doi.org/10.1016/j.pnpbp.2022.110626 4. de Sousa TR, Dt C, Novais F. Exploring the hypothesis of a schizophrenia and bipolar disorder continuum: biological, genetic and pharmacologic data. CNS Neurol Disord Drug Targets. 2023;22(2):161–71. DOI: https://doi.org/10.2174/1871527320666210902164235 5. Gangadin SS, Enthoven AD, van Beveren NJM, et al. Immune Dysfunction in Schizophrenia Spectrum Disorders. Annu Rev Clin Psychol. 2024;20(1):229–57. DOI: https://doi.org/10.1146/annurev-clinpsy-081122-013201 6. Maksimova NM, Bulgakova TS, Uzbekov MG. Rol' citokinov v patogeneze i terapii psikhicheskikh rasstrojstv. Social'naya i klinicheskaya psikhiatriya. 2019;29(3):71–7. (In Russ.) 7. Semke VYa, Vetlugina TP, Nevidimova TI, et al. Klinicheskaya psikhoneiroimmunologiya. Tomsk; 2003. 300 p. (In Russ.) 8. Vetlugina TP, Lobacheva OA, Naidenova NN, et al. Psikhoneiroimmunomodulyatsiya pri shizofrenii. Patogenez. 2006;4(1):42–3. (In Russ.) 9. Lobacheva OA, Naidenova NN, Vetlugina TP. Tsitokiny pri shizofrenii. Patogenez. 2006;4(1):59–60. (In Russ.) 10. Klyushnik TP, Androsova LV, Simashkova NV, et al. [Status of the immune system in the continuum of autistic disorders and schizophrenia spectrum]. Vestnik Soveta molodykh uchenykh i spetsialistov Chelyabinskoi oblasti [Bulletin of the council of young scientists and specialists of the Chelyabinsk region]. 2016;3(2):62–6. (In Russ.) 11. Müller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci. 2015;9:372. DOI: https://doi.org/10.3389/fnins.2015.00372 12. Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune system abnormalities in schizophrenia: an integrative view and translational perspectives. Front Psychiatry. 2022;13:880568. DOI: https://doi.org/10.3389/fpsyt.2022.880568 13. Chan MK, Guest PC, Levin Y, et al. Converging evidence of blood-based biomarkers for schizophrenia: an update. Int Rev Neurobiol. 2011;101:95–144. DOI: https://doi.org/10.1016/B978-0-12-387718-5.00005-5 14. Khandaker GM, Cousins L, Deakin J, et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–70. DOI: https://doi.org/10.1016/S2215-0366(14)00122-9 15. Ermakov EA, Mednova IA, Boiko AS, et al. Chemokine dysregulation and neuroinflammation in schizophrenia: a systematic review. Int J Mol Sci. 2023;24(3):2215. DOI: https://doi.org/10.3390/ijms24032215 16. Frydecka D, Krzystek-Korpacka M, Lubeiro A, et al. Profiling inflammatory signatures of schizophrenia: A cross-sectional and meta-analysis study. Brain Behav Immun. 2018;71:28–36. DOI: https://doi.org/10.1016/j.bbi.2018.05.002 17. Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–709. DOI: https://doi.org/10.1038/mp.2016.3 18. Fraguas D, Díaz-Caneja CM, Ayora M, et al. Oxidative Stress and Inflammation in First-Episode Psychosis: A Systematic Review and Meta-analysis. Schizophr Bull. 2019;45(4):742–51. DOI: https://doi.org/10.1093/schbul/sby125 19. Pillinger T, Osimo EF, Brugger S, et al. A Meta-analysis of Immune Parameters, Variability, and Assessment of Modal Distribution in Psychosis and Test of the Immune Subgroup Hypothesis. Schizophr Bull. 2019;45(5):1120–33. DOI: https://doi.org/10.1093/schbul/sby160 20. Çakici N, Sutterland AL, Penninx BWJH, et al. Altered peripheral blood compounds in drug-naïve first-episode patients with either schizophrenia or major depressive disorder: a meta-analysis. Brain Behav Immun. 2020;88:547–58. DOI: https://doi.org/10.1016/j.bbi.2020.04.039 21. Dunleavy C, Elsworthy RJ, Upthegrove R, et al. Inflammation in first-episode psychosis: The contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr Scand. 2022;146(1):6–20. DOI: https://doi.org/10.1111/acps.13416 22. Sakharov AV, Mynduskin IV, Tereshkov PP, et al. [The content of inflammatory chemokines, cytokines and indicators of neurodegradation of blood in patients with the first episode of schizophrenia at antipsychotic therapy]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2021;(4):61–7. (In Russ.) DOI: https://doi.org/10.47877/1560-957X-2021-10407 23. Sakharov AV, Golygina SE, Prokhorov AS, Tereshkov PP. [Blood content of pro-inflammatory chemokines in patients with first episode of schizophrenia before therapy]. Neirokhimiya. 2023;40(1):92–6. (In Russ.) DOI: https://doi.org/10.31857/S102781332301017X 24. Golygina SE, Tereshkov PP, Sakharov AV. [Blood immune response checkpoints in patients with the first episode of paranoid schizophrenia before therapy (preliminary results)]. Sibirskii vestnik psikhiatrii i narkologii [Siberian Herald of Psychiatry and Addiction Psychiatry]. 2023;1(118):82–90. (In Russ.) DOI: https://doi.org/10.26617/1810-3111-2023-1(118)-82-90 25. Momtazmanesh S, Zare-Shahabadi A, Rezaei N. Cytokine alterations in schizophrenia: An updated review. Front Psychiatry. 2019;10:892. DOI: https://doi.org/10.3389/fpsyt.2019.00892 26. Miller BJ, Buckley P, Seabolt W, et al. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663–71. DOI: https://doi.org/10.1016/j.biopsych.2011.04.013 27. Yan J, Xia Q, Sun X, et al. Dysregulation of interleukin-8 is involved in the onset and relapse of schizophrenia: An independent validation and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2024;13(133):111018. DOI: https://doi.org/10.1016/j.pnpbp.2024.111018 28. Facal F, Arrojo M, Páramo M, Costas J. Association between psychiatric admissions in patients with schizophrenia and IL-6 plasma levels polygenic score. Eur Arch Psychiatry Clin Neurosci. 2024 Mar 16. DOI: https://doi.org/10.1007/s00406-024-01786-z 29. Chen P, Yang HD, Wang JJ, et al. Association of serum interleukin-6 with negative symptoms in stable early-onset schizophrenia. World J Psychiatry. 2024;14(6):794–803. DOI: https://doi.org/10.5498/wjp.v14.i6.794 30. Soltani M, Mirzaei Y, Mer AH, et al. The Role of Innate and Adaptive Immune System in the Pathogenesis of Schizophrenia. Iran J Allergy Asthma Immunol. 2024;23(1):1–28. DOI: https://doi.org/10.18502/ijaai.v23i1.14951 31. Beatriz González-Castro T, Alfonso Tovilla-Zárate C, Esther Juárez-Rojop I, et al. The association of cytokines genes (IL-6 and IL-10) with the susceptibility to schizophrenia: A systematic review and meta-analysis. Brain Res. 2024;1822:148667. DOI: https://doi.org/10.1016/j.brainres.2023.148667 32. Zhang XY, Zhou DF, Cao LY, et al. Changes in serum interleukin-2, -6, and -8 levels before and during treatment with risperidone and haloperidol: relationship to outcome in schizophrenia. J Clin Psychiatry. 2004;65(7):940–7. DOI: https://doi.org/10.4088/jcp.v65n0710 33. Zhilyaeva TV, Pyatoikina AS, Rukavishnikov GV, Mazo GE. [Interleukin-6 in schizophrenia is associated with negative symptoms, side effects of therapy and smoking: results of a pilot study]. Obozrenie psihiatrii i medicinskoj psihologii imeni VM Bekhtereva [VM Bekhterev Review of Psychiatry and Medical Psychology]. 2022;56(2):47–55. (In Russ.) DOI: https://doi.org/10.31363/2313-7053-2022-56-2-47-55 34. Zhu F, Zhang L, Liu F, et al. Altered serum tumor necrosis factor and interleukin-1β in first-episode drug-naive and chronic schizophrenia. Front Neurosci. 2018;12:296. DOI: https://doi.org/10.3389/fnins.2018.00296 35. Mednova IA, Boiko AS, Kornetova EG, et al. Cytokines as potential biomarkers of clinical characteristics of schizophrenia. Life (Basel). 2022;12(12):1972. DOI: https://doi.org/10.3390/life12121972 36. Dawidowski B, Górniak A, Podwalski P, et al. The role of cytokines in the pathogenesis of schizophrenia. J Clin Med. 2021;10(17):3849. DOI: https://doi.org/10.3390/jcm10173849 37. Zhou Y, Peng W, Wang J, et al. Plasma levels of IL-1Ra are associated with schizophrenia. Psychiatry Clin Neurosci. 2019;73(3):109–15. DOI: https://doi.org/10.1111/pcn.12794 38. Abramova OV, Zorkina YaA, Kostyuk GP, et al. [Associations of genetic polymorphisms and neuroinfl ammatory markers with clinical schizophrenia]. Vestnik Rossiiskogo fonda fundamental'nykh issledovanii. 2021;4(112):14–23. (In Russ.) 39. Morozova A, Zorkina Y, Pavlov K, et al. Associations of genetic polymorphisms and neuroimmune markers with some parameters of frontal lobe dysfunction in schizophrenia. Front Psychiatry. 2021;7(12):655178. DOI: https://doi.org/10.3389/fpsyt.2021.655178 40. Malashenkova IK, Krynskiy SA, Ogurtsov DP, et al. Immunoinflammatory profile in patients with episodic and continuous paranoid schizophrenia. Consort Psychiatr. 2021;2(1):19–31. DOI: https://doi.org/10.17816/CP66 41. Ushakov VL, Sharaev MG, Malashenkova IK, et al. Basic cognitive architectures and neuroimmune serum biomarkers in schizophrenia. Procedia Comput Sci. 2018;145:596–603. DOI: https://doi.org/10.1016/j.procs.2018.11.097 42. Capuzzi E, Bartoli F, Crocamo C, et al. Acute variations of cytokine levels after antipsychotic treatment in drug-naïve subjects with a first-episode psychosis: A meta-analysis. Neurosci Biobehav Rev. 2017;77:122–8. DOI: https://doi.org/10.1016/j.neubiorev.2017.03.003 43. Chu CS, Li DJ, Chu CL, et al. Decreased IL-1ra and NCAM-1/CD56 serum levels in unmedicated patients with schizophrenia before and after antipsychotic treatment. Psychiatry Investig. 2018;15(7):727–32. DOI: https://doi.org/10.30773/pi.2017.11.10 44. Romeo B, Brunet-Lecomte M, Martelli C, Benyamina A. Kinetics of cytokine levels during antipsychotic treatment in schizophrenia: a meta-analysis. Int J Neuropsychopharmacol. 2018;21(9):828–36. DOI: https://doi.org/10.1093/ijnp/pyy062 45. Boiko AS, Mednova IA, Kornetova EG, et al. Cell adhesion molecules in schizophrenia patients with metabolic syndrome. Metabolites. 2023;13(3):376. DOI: https://doi.org/10.3390/metabo13030376 46. Sheikh MA, O'Connell KS, Lekva T, et al. Systemic cell adhesion molecules in severe mental illness: potential role of intercellular CAM-1 in linking peripheral and neuroinflammation. Biol Psychiatry. 2023;93(2):187–96. DOI: https://doi.org/10.1016/j.biopsych.2022.06.029 47. Sobiś J, Rykaczewska-Czerwińska M, Świętochowska E, Gorczyca P. Therapeutic effect of aripiprazole in chronic schizophrenia is accompanied by anti-inflammatory activity. Pharmacol Rep. 2015;67(2):353–9. DOI: https://doi.org/10.1016/j.pharep.2014.09.007 48. Boiko AS, Mednova IA, Kornetova EG, et al. Cytokine level changes in schizophrenia patients with and without metabolic syndrome treated with atypical antipsychotics. Pharmaceuticals (Basel). 2021;14(5):446. DOI: https://doi.org/10.3390/ph14050446 49. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7. DOI: https://doi.org/10.1038/nature13595 50. Levchenko A, Kanapin A, Samsonova A, et al. A genome-wide association study identifies a gene network associated with paranoid schizophrenia and antipsychotics-induced tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry. 2021;105:110134. DOI: https://doi.org/10.1016/j.pnpbp.2020.110134 51. Steen NE, Rahman Z, Szabo A, et al. Shared genetic loci between schizophrenia and white blood cell counts suggest genetically determined systemic immune abnormalities. Schizophr Bull. 2023;49(5):1345–54. DOI: https://doi.org/10.1093/schbul/sbad082 52. Parker N, Cheng W, Hindley GFL, et al. Genetic overlap between global cortical brain structure, c-reactive protein, and white blood cell counts. Biol Psychiatry. 2024;95(1):62–71. DOI: https://doi.org/10.1016/j.biopsych.2023.06.008 53. Iakunchykova O, Leonardsen EH, Wang Y. Genetic evidence for causal effects of immune dysfunction in psychiatric disorders: where are we? Transl Psychiatry. 2024;14(1):63. DOI: https://doi.org/10.1038/s41398-024-02778-2 54. Chen X, Yao T, Cai J, et al. Systemic inflammatory regulators and 7 major psychiatric disorders: A two-sample Mendelian randomization study. Prog Neuropsychopharmacol Biol Psychiatry. 2022;116:110534. DOI: https://doi.org/10.1016/j.pnpbp.2022.110534 55. Golimbet VE, Klyushnik TP. [Molecular-genetic and immunological aspects of the formation of psychopathological symptoms in schizophrenia]. Zh Nevrol Psikhiatr Im SS Korsakova. 2022;122(10):66–71. (In Russ.) DOI: https://doi.org/10.17116/jnevro202212210166 56. Mikhalitskaya EV, Vyalova NM, Ermakov EA, et al. Association of single nucleotide polymorphisms of cytokine genes with depression, schizophrenia and bipolar disorder. Genes (Basel). 2023;14(7):1460. DOI: https://doi.org/10.3390/genes14071460 57. Golimbet V, Lezheiko T, Mikhailova V, et al. A study of the association between polymorphisms in the genes for interleukins IL-6 and IL-10 and negative symptoms subdomains in schizophrenia. Indian J Psychiatry. 2022;64(5):484–8. DOI: https://doi.org/10.4103/indianjpsychiatry.indianjpsychiatry_212_22 58. Lu D, Wang M, Yang T, et al. Association of Interleukin-6 Polymorphisms with Schizophrenia and Depression: A Case-Control Study. Lab Med. 2023;54(3):250–5. DOI: https://doi.org/10.1093/labmed/lmac099 59. Gandal MJ, Zhang P, Hadjimichael E, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362(6420):8127. DOI: https://doi.org/10.1126/science.aat8127 60. Wu Q, Yuan F, Zhang S, et al. Correlation of blood biochemical markers with tardive dyskinesia in schizophrenic patients. Dis Markers. 2022;2022:1767989. DOI: https://doi.org/10.1155/2022/1767989 61. Choi KY, Choo JM, Lee YJ, et al. Association between the IL10 rs1800896 polymorphism and tardive dyskinesia in schizophrenia. Psychiatry Investig. 2020;17(10):1031–6. DOI: https://doi.org/10.30773/pi.2020.0191 62. An HM, Tan YL, Shi J, et al. Altered IL-2, IL-6 and IL-8 serum levels in schizophrenia patients with tardive dyskinesia. Schizophr Res. 2015;162(1–3):261–8. DOI: https://doi.org/10.1016/j.schres.2014.12.037 63. Vancampfort D, Stubbs B, Mitchell AJ, et al. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis. World Psychiatry. 2015;14(3):339–47. DOI: https://doi.org/10.1002/wps.20252 64. Kornetova EG, Kornetov AN, Mednova IA, et al. Comparative characteristics of the metabolic syndrome prevalence in patients with schizophrenia in three Western Siberia psychiatric hospitals. Front Psychiatry. 2021;12:661174. DOI: https://doi.org/10.3389/fpsyt.2021.661174 65. Kelly CW, McEvoy JP, Miller BJ. Total and differential white blood cell counts, inflammatory markers, adipokines, and incident metabolic syndrome in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Schizophr Res. 2019;209:193–7. DOI: https://doi.org/10.1016/j.schres.2019.04.021 66. Fang X, Yu L, Wang D, et al. Association between SIRT1, cytokines, and metabolic syndrome in schizophrenia patients with olanzapine or clozapine monotherapy. Front Psychiatry. 2020;11:602121. DOI: https://doi.org/10.3389/fpsyt.2020.602121 67. Dikeç G, Arabaci LB, Uzunoglu GB, Mizrak SD. Metabolic side effects in patients using atypical antipsychotic medications during hospitalization. J Psychosoc Nurs Ment Health Serv. 2018;56(4):28–37. DOI: https://doi.org/10.3928/02793695-20180108-05 68. Mirhafez SR, Pasdar A, Avan A, et al. Cytokine and growth factor profiling in patients with the metabolic syndrome. Br J Nutr. 2015;113(12):1911–9. DOI: https://doi.org/10.1017/S0007114515001038 69. Molina JD, Avila S, Rubio G, López-Muñoz F. Metabolomic connections between schizophrenia, antipsychotic drugs and metabolic syndrome: a variety of players. Curr Pharm Des. 2021;27(39):4049–61. DOI: https://doi.org/10.2174/1381612827666210804110139 70. Boiko AS. Kliniko-patobiologicheskie zakonomernosti formirovaniya metabolicheskogo sindroma u bol'nykh shizofreniei [MD thesis]. [Tomsk (Russia)]. Nauchno-issledovatel'skii institut psikhicheskogo zdorov'ya [Mental Health Research Institute]; 2023. 48 p. (In Russ.) 71. Parksepp M, Haring L, Kilk K, et al. A marked low-grade inflammation and a significant deterioration in metabolic status in first-episode schizophrenia: a five-year follow-up study. Metabolites. 2022;12(10):983. DOI: https://doi.org/10.3390/metabo12100983 72. Chen X, Gao P, Qi Y, et al. High circulating MIF levels indicate the association with atypical antipsychotic-induced adverse metabolic effects. Transl Psychiatry. 2024;14(1):210. DOI: https://doi.org/10.1038/s41398-024-02934-8 73. Yuan X, Yang Q, Yao Y, et al. Role of HOMA-IR and IL-6 as screening markers for the metabolic syndrome in patients with chronic schizophrenia: a psychiatric hospital-based cross-sectional study. Eur Arch Psychiatry Clin Neurosci. 2024;274(5):1063–70. DOI: https://doi.org/10.1007/s00406-023-01618-6 74. Dong Y, Zhu M, Li Y, et al. Association of cytokines levels, psychopathology and cognition among CR-TRS patients with metabolic syndrome. Schizophrenia (Heidelb). 2024;10(1):47. DOI: https://doi.org/10.1038/s41537-024-00469-x 75. Mojadadi MS, Mahjour M, Fahimi H, et al. Relationship between blood-based inflammatory indices and clinical score of schizophrenia patients: A cross-sectional study. Behav Brain Res. 2024;460:114807. DOI: https://doi.org/10.1016/j.bbr.2023.114807 76. Herron JW, Nerurkar L, Cavanagh J. Neuroimmune biomarkers in mental illness. In: Biomarkers in Psychiatry. J Pratt, J Hall, editors. Current Topics in Behavioral Neurosciences. Vol. 40. Springer, Cham, 2018. p. 45–78. DOI: https://doi.org/10.1007/7854_2018_45 77. Li YT, Zeng X. Circulating inflammatory cytokines influencing schizophrenia: a Mendelian randomization study. Front Psychiatry. 2024;15:1417213. DOI: https://doi.org/10.3389/fpsyt.2024.1417213 78. Sharaev MG, Malashenkova IK, Maslennikova AV, et al. Diagnosis of schizophrenia based on the data of various modalities: biomarkers and machine learning techniques (review). Sovrem Tekhnologii Med. 2022;14(5):53–75. DOI: https://doi.org/10.17691/stm2022.14.5.06 79. Cui LB, Wang XY, Fu YF, et al. Transcriptional level of inflammation markers associates with short-term brain structural changes in first-episode schizophrenia. BMC Med. 2023;21(1):250. DOI: https://doi.org/10.1186/s12916-023-02963-y 80. Kozyrev EA, Ermakov EA, Boiko AS, et al. Building predictive models for schizophrenia diagnosis with peripheral inflammatory biomarkers. Biomedicines. 2023;11(7):1990. DOI: https://doi.org/10.3390/biomedicines11071990 81. Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44(5):973–82. DOI: https://doi.org/10.1093/schbul/sby024 82. Cakici N, Van Beveren NJM, Judge-Hundal G, et al. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: a meta-analysis. Psychol Med. 2019;49(14):2307–19. DOI: https://doi.org/10.1017/S0033291719001995 83. Amerio A, Magnani L, Arduino G, et al. Immunomodulatory effects of clozapine: more than just a side effect in schizophrenia. Curr Neuropharmacol. 2023;22(7):1233–47. DOI: https://doi.org/10.2174/1570159X22666231128101725 84. Safari H, Mashayekhan S. Inflammation and mental health disorders: immunomodulation as a potential therapy for psychiatric conditions. Curr Pharm Des. 2023;29(36):2841-52. DOI: https://doi.org/10.2174/0113816128251883231031054700 85. Nishimon S, Ohnuma T, Takebayashi Y, et al. High serum soluble tumor necrosis factor receptor 1 predicts poor treatment response in acute-stage schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2017;76:145–54. DOI: https://doi.org/10.1016/j.pnpbp.2017.03.006 86. Zhang Y, Tao S, Coid J, et al. The role of total white blood cell count in antipsychotic treatment for patients with schizophrenia. Curr Neuropharmacol. 2024;22(1):159–67. DOI: https://doi.org/10.2174/1570159X21666230104090046 87. Bishop JR, Zhang L, Lizano P. Inflammation subtypes and translating inflammation-related genetic findings in schizophrenia and related psychoses: a perspective on pathways for treatment stratification and novel therapies. Harv Rev Psychiatry. 2022;30(1):59–70. DOI: https://doi.org/10.1097/HRP.0000000000000321 88. Ermakov EA, Melamud MM, Boiko AS, et al. Association of peripheral inflammatory biomarkers and growth factors levels with sex, therapy and other clinical factors in schizophrenia and patient stratification based on these data. Brain Sci. 2023;13(5):836. DOI: https://doi.org/10.3390/brainsci13050836
Метрики статей
Metrics powered by PLOS ALM