Нейротрофические факторы: ключ к пониманию депрессивных расстройств
Полный текст:
Только для подписчиков
|
Рекомендуемое оформление библиографической ссылки:
Чернышева А.А., Гадисов Т.Г., Зобкова Н.В., Тарковская К.Ш., Вадехина В.В., Филин А.А., Мельников П.А., Шепелева И.И. Нейротрофические факторы: ключ к пониманию депрессивных расстройств // Российский психиатрический журнал. 2024. №5. С. 18-27.
В научном обзоре с целью анализа роли ряда нейротрофинов, таких как BDNF, NGF и NT-3, в патогенезе депрессивных расстройств представлены результаты мировых исследований, посвященных изучению их диагностической и прогностической функций в контексте данных состояний. Рассматривается возможность использования нейротрофинов в качестве маркеров при диагностике депрессивных расстройств, а также их применение в терапии в качестве молекул, имеющих антидепрессантный эффект. Понимание механизмов действия нейротрофинов и их роль в патогенезе депрессии может помочь улучшить подходы к диагностике депрессивных расстройств и разработать эффективные методы их лечения, что имеет важное значение для улучшения жизни пациентов с данными заболеваниями.
Ключевые слова психические заболевания; депрессия; нейротрофины; BDNF; NGF; NT-3
1. McCarron RM, Shapiro B, Rawles J, Luo J. Depression. Ann Intern Med. 2021;174(5):ITC65–80. DOI: 10.7326/AITC202105180 2. Mental Health and COVID-19: Early evidence of the pandemic’s impact. World Health Organization (WHO). 2022. URL: https://iris.who.int/bitstream/handle/10665/352189/WHO-2019-nCoV-Sci-Brief-Mental-health-2022.1-eng.pdf?sequence=1 (accessed on: 20.06.2024). 3. Marwaha S, Palmer E, Suppes T, et al. Novel and emerging treatments for major depression. Lancet. 2023;401(10371):141–53. DOI: 10.1016/S0140-6736(22)02080-3 4. Penninx BW, Pine DS, Holmes EA, et al. Anxiety disorders. Lancet. 2021;397(10277):914–27. DOI: 10.1016/S0140-6736(21)00359-7 5. Davis LL, Schein J, Cloutier M, et al. The Economic Burden of Posttraumatic Stress Disorder in the United States From a Societal Perspective. J Clin Psychiatry. 2022;83(3):21m14116. DOI: 10.4088/JCP.21m14116 6. Bremner J, Vythilingam M, Vermetten E, et al. Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry. 2002;51(4):273–9. DOI: 10.1016/s0006-3223(01)01336-1 7. Bremner JD, Randall P, Scott TM, et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry. 1995;152(7):973–81. DOI: 10.1176/ajp.152.7.973 8. Gurvits TV, Shenton ME, Hokama H, et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry. 1996;40(11):1091–9. DOI: 10.1016/S0006-3223(96)00229-6 9. Radley JJ, Rocher AB, Miller M, et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex. 2006;16(3):313–20. DOI: 10.1093/cercor/bhi104 10. Watanabe Y, Gould E, Daniels DC, et al. Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol. 1992;222(1):157–62. DOI: 10.1016/0014-2999(92)90830-w 11. Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45(9):1085–98. DOI: 10.1016/s0006-3223(99)00041-4 12. Stockmeier CA, Mahajan GJ, Konick LC, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry. 2004;56(9):640–50. DOI: 10.1016/j.biopsych.2004.08.022 13. Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. 2008;64(10):86370. DOI: 10.1016/j.biopsych.2008.06.008 14. Liston C, Miller MM, Goldwater DS, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26(30):7870–4. DOI: 10.1523/JNEUROSCI.1184-06.2006 15. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11(6):1164–78. DOI: 10.5114/aoms.2015.56342 16. Dechant G, Neumann H. Neurotrophins. Adv Exp Med Biol. 2002;513:303–34. DOI: 10.1007/978-1-4615-0123-7_11 17. Ghassabian A, Sundaram R, Chahal N, et al. Determinants of neonatal brain-derived neurotrophic factor and association with child development. Dev Psychopathol. 2017;29(4):1499–511. DOI: 10.1017/S0954579417000414 18. Jabbi M, Cropp B, Nash T, et al. BDNF Val66Met polymorphism tunes frontolimbic circuitry during affective contextual learning. Neuroimage. 2017;162:373–83. DOI: 10.1016/j.neuroimage.2017.08.080 19. Youssef MM, Underwood MD, Huang YY, et al. Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide. Int J Neuropsychopharmacol. 2018;21(6):528–38. DOI: 10.1093/ijnp/pyy008 20. Chen KS, Nishimura MC, Armanini MP, et al. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci. 1997;17(19):7288–96. DOI: 10.1523/JNEUROSCI.17-19-07288.1997 21. Syed Z, Dudbridge F, Kent L. An investigation of the neurotrophic factor genes GDNF, NGF, and NT3 in susceptibility to ADHD. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(3):375–8. DOI: 10.1002/ajmg.b.30459 22. Lang UE, Hellweg R, Bajbouj M, et al. Gender-dependent association of a functional NGF polymorphism with anxiety-related personality traits. Pharmacopsychiatry. 2008;41(5):196–9. DOI: 10.1055/s-0028-1082070 23. Cui D, Zhang H, Yang BZ, et al. Variation in NGFB is associated with primary affective disorders in women. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(4):401–12. DOI: 10.1002/ajmg.b.31175 24. Ohtsuka M, Fukumitsu H, Furukawa S. Neurotrophin-3 stimulates neurogenetic proliferation via the extracellular signal-regulated kinase pathway. J Neurosci Res. 2009;87(2):301–6. DOI: 10.1002/jnr.21855 25. Gratto KA, Verge VM. Neurotrophin-3 down-regulates trkA mRNA, NGF high-affinity binding sites, and associated phenotype in adult DRG neurons. Eur J Neurosci. 2003;18(6):1535–48. DOI: 10.1046/j.1460-9568.2003.02881.x 26. Paul J, Gottmann K, Lessmann V. NT-3 regulates BDNF-induced modulation of synaptic transmission in cultured hippocampal neurons. Neuroreport. 2001;12(12):2635–9. DOI: 10.1097/00001756-200108280-00010 27. Ullal GR, Michalski B, Xu B, et al. NT-3 modulates BDNF and proBDNF levels in naïve and kindled rat hippocampus. Neurochem Int. 2007;50(6):866–71. DOI: 10.1016/j.neuint.2007.02.009 28. Armengol L, Gratacòs M, Pujana MA, et al. 5' UTR-region SNP in the NTRK3 gene is associated with panic disorder. Mol Psychiatry. 2002;7(9):928–30. DOI: 10.1038/sj.mp.4001134 29. Muiños-Gimeno M, Guidi M, Kagerbauer B, et al. Allele variants in functional MicroRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders. Hum Mutat. 2009;30(7):1062–71. DOI: 10.1002/humu.21005 30. Filho CB, Jesse CR, Donato F, et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na(+), K(+)-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience. 2015;289:367–80. DOI: 10.1016/j.neuroscience.2014.12.048 31. Hu X, Zhao HL, Kurban N, et al. Reduction of BDNF Levels and Biphasic Changes in Glutamate Release in the Prefrontal Cortex Correlate with Susceptibility to Chronic Stress-Induced Anhedonia. eNeuro. 2023;10(11):ENEURO.0406-23.2023. DOI: 10.1523/ENEURO.0406-23.2023 32. Thompson Ray M, Weickert CS, Wyatt E, et al. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 2011;36(3):195–203. DOI: 10.1503/jpn.100048 33. Smith MA, Makino S, Kvetnansky R, et al. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci. 1995;15(3(1)):1768–77. DOI: 10.1523/JNEUROSCI.15-03-01768.1995 34. Lee BH, Kim H, Park SH, Kim YK. Decreased plasma BDNF level in depressive patients. J Affect Disord. 2007;101(1–3):239–44. DOI: 10.1016/j.jad.2006.11.005 35. Mikoteit T, Beck J, Eckert A, et al. High baseline BDNF serum levels and early psychopathological improvement are predictive of treatment outcome in major depression. Psychopharmacology (Berl). 2014;231(15):2955–65. DOI: 10.1007/s00213-014-3475-8 36. Piccinni A, Marazziti D, Catena M, et al. Plasma and serum brain-derived neurotrophic factor (BDNF) in depressed patients during 1 year of antidepressant treatments. J Affect Disord. 2008;105(1–3):279–83. DOI: 10.1016/j.jad.2007.05.005 37. Kreinin A, Lisson S, Nesher E, et al. Blood BDNF level is gender specific in severe depression. PLoS One. 2015;10(5):e0127643. DOI: 10.1371/journal.pone.0127643 38. Kurita M, Nishino S, Kato M, et al. Plasma brain-derived neurotrophic factor levels predict the clinical outcome of depression treatment in a naturalistic study. PLoS One. 2012;7(6):e39212. DOI: 10.1371/journal.pone.0039212 39. Zelada MI, Garrido V, Liberona A, et al. Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Major Depressive Disorder (MDD): A Systematic Review. Int J Mol Sci. 2023;24(19):14810. DOI: 10.3390/ijms241914810 40. Diniz BS, Teixeira AL, Machado-Vieira R, et al. Reduced serum nerve growth factor in patients with late-life depression. Am J Geriatr Psychiatry. 2013;21(5):493–6. DOI: 10.1016/j.jagp.2013.01.014 41. Salsabil L, Shahriar M, Islam SMA, et al. Higher serum nerve growth factor levels are associated with major depressive disorder pathophysiology: a case-control study. J Int Med Res. 2023;51(4):3000605231166222. DOI: 10.1177/03000605231166222 42. Xiong P, Zeng Y, Wan J, et al. The role of NGF and IL-2 serum level in assisting the diagnosis in first episode schizophrenia. Psychiatry Res. 2011;189(1):72–6. DOI: 10.1016/j.psychres.2010.12.017 43. Banerjee R, Ghosh AK, Ghosh B, et al. Decreased mRNA and Protein Expression of BDNF, NGF, and their Receptors in the Hippocampus from Suicide: An Analysis in Human Postmortem Brain. Clin Med Insights Pathol. 2013;6:1–11. DOI: 10.4137/CMPath.S12530 44. Dwivedi Y, Mondal AC, Rizavi HS, et al. Suicide brain is associated with decreased expression of neurotrophins. Biol Psychiatry. 2005;58(4):315–24. DOI: 10.1016/j.biopsych.2005.04.014 45. Wiener CD, de Mello Ferreira S, Pedrotti Moreira F, et al. Serum levels of nerve growth factor (NGF) in patients with major depression disorder and suicide risk. J Affect Disord. 2015;184:245–8. DOI: 10.1016/j.jad.2015.05.067 46. Otsuki K, Uchida S, Watanuki T, et al. Altered expression of neurotrophic factors in patients with major depression. J Psychiatr Res. 2008;42(14):1145–53. DOI: 10.1016/j.jpsychires.2008.01.010 47. Arabska J, Łucka A, Strzelecki D, et al. In schizophrenia serum level of neurotrophin-3 (NT-3) is increased only if depressive symptoms are present. Neurosci Lett. 2018;684:152–5. DOI: 10.1016/j.neulet.2018.08.005 48. Loch AA, Zanetti MV, de Sousa RT, et al. Elevated neurotrophin-3 and neurotrophin 4/5 levels in unmedicated bipolar depression and the effects of lithium. Prog Neuropsychopharmacol Biol Psychiatry. 2015;56:243–6. DOI: 10.1016/j.pnpbp.2014.09.014 49. Walz JC, Andreazza AC, Frey BN, et al. Serum neurotrophin-3 is increased during manic and depressive episodes in bipolar disorder. Neurosci Lett. 2007;415(1):87–9. DOI: 10.1016/j.neulet.2007.01.002 50. Wysokiński A. Serum levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in depressed patients with schizophrenia. Nord J Psychiatry. 2016;70(4):267–71. DOI: 10.3109/08039488.2015.1087592 51. Munkholm K, Pedersen BK, Kessing LV, et al. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients. Psychoneuroendocrinology. 2014;47:199–211. DOI: 10.1016/j.psyneuen.2014.05.011 52. Hock C, Heese K, Müller-Spahn F, et al. Increased cerebrospinal fluid levels of neurotrophin 3 (NT-3) in elderly patients with major depression. Mol Psychiatry. 2000;5(5):510–3. DOI: 10.1038/sj.mp.4000743 53. Kverno KS, Mangano E. Treatment-Resistant Depression: Approaches to Treatment. J Psychosoc Nurs Ment Health Serv. 2021;59(9):7–11. DOI: 10.3928/02793695-20210816-01 54. Mosiołek A, Mosiołek J, Jakima S, et al. Effects of Antidepressant Treatment on Neurotrophic Factors (BDNF and IGF-1) in Patients with Major Depressive Disorder (MDD). J Clin Med. 2021;10(15):3377. DOI: 10.3390/jcm10153377 55. Zhou C, Zhong J, Zou B, et al. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS One. 2017;12(2):e0172270. DOI: 10.1371/journal.pone.0172270 56. Song X, Zhang F, Cao L, et al. Effect of fluoxetine on nerve growth factor expression in hippocampus CA1, CA3 and DG of rat depression model. Med J Wuhan University. 2015;36(2):185–8. DOI:10.14188/j.1671-8852.2015.02.005 57. Schulte-Herbrüggen O, Fuchs E, Abumaria N, et al. Effects of escitalopram on the regulation of brain-derived neurotrophic factor and nerve growth factor protein levels in a rat model of chronic stress. J Neurosci Res. 2009;87(11):2551–60. DOI: 10.1002/jnr.22080 58. Hellweg R, Ziegenhorn A, Heuser I, et al. Serum concentrations of nerve growth factor and brain-derived neurotrophic factor in depressed patients before and after antidepressant treatment. Pharmacopsychiatry. 2008;41(2):66–71. DOI: 10.1055/s-2007-1004594 59. Martino M, Rocchi G, Escelsior A, et al. NGF serum levels variations in major depressed patients receiving duloxetine. Psychoneuroendocrinology. 2013;38(9):1824–28. DOI: 10.1016/j.psyneuen.2013.02.009 60. Mishra BR, Maiti R, Nath S, et al. Effect of Sertraline, Dosulepin, and Venlafaxine on Non-BDNF Neurotrophins in Patients With Depression: A Cohort Study. J Clin Psychopharmacol. 2019;39(3):220–5. DOI: 10.1097/JCP.0000000000001022 61. Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22(8):3251–61. DOI: 10.1523/JNEUROSCI.22-08-03251.2002 62. Martin-Iverson MT, Todd KG, Altar CA. Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine. J Neurosci. 1994;14(3(1)):1262–70. DOI: 10.1523/JNEUROSCI.14-03-01262.1994 63. McGeary JE, Gurel V, Knopik VS, et al. Effects of nerve growth factor (NGF), fluoxetine, and amitriptyline on gene expression profiles in rat brain. Neuropeptides. 2011;45(5):317–22. DOI: 10.1016/j.npep.2011.06.002 64. Overstreet DH, Fredericks K, Knapp D, et al. Nerve growth factor (NGF) has novel antidepressant-like properties in rats. Pharmacol Biochem Behav. 2010;94(4):553–60. DOI: 10.1016/j.pbb.2009.11.010 65. Haenisch B, Bilkei-Gorzo A, Caron MG, Bönisch H. Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J Neurochem. 2009;111(2):403–16. DOI: 10.1111/j.1471-4159.2009.06345.x 66. Koshkina A, Dudnichenko T, Baranenko D, et al. Effects of Vitamin D3 in Long-Term Ovariectomized Rats Subjected to Chronic Unpredictable Mild Stress: BDNF, NT-3, and NT-4 Implications. Nutrients. 2019;11(8):1726. DOI: 10.3390/nu11081726
Метрики статей
Metrics powered by PLOS ALM