Spectral parameters of EEG in patients with paranoid schizophrenia with varying degrees of severity of neurocognitive impairment

Full Text:   Subscribers Only

Suggested citation:

Galkin SA, Kornetova EG, Tiguncev VV, et al. [Spectral parameters of EEG in patients with paranoid schizophrenia with varying degrees of severity of neurocognitive impairment]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2023;(4):31-38. Russian

Abstract

In an empirical study to study the relationship of electroencephalographic parameters at rest with the severity of neurocognitive impairment in schizophrenia, 97 patients with paranoid schizophrenia were examined. A scale of brief assessment of cognitive functions in patients with schizophrenia (BACS) was used to identify neurocognitive impairment. The values of spectral power analysis for theta, alpha and beta rhythms were used as electroencephalographic data. Negative correlations were found between the spectral power of the EEG theta-band at rest and indicators of cognitive functions, such as verbal memory, working memory, motor functions, attention and speed of information processing.

Keywords schizophrenia; paranoid schizophrenia; neurocognitive impairment; electroencephalography; theta-band

References

1. Sofronov AG, Savelyev AP, Pashkovsky VE, et al. Nejrokognitivnyj deficit pri shizofrenii: uchebno-metodicheskoe posobie. St. Petersburg: Izd-vo SZGMU im. I.I. Mechnikova; 2017. 48 p. (In Russ.) 2. Kornetov AN, Kornetova EG, Golenkova AV, et al. [Neurocognitive deficits in clinical polymorphism of schizophrenia: typology, expression and syndromal overlaps]. Byulleten' sibirskoj mediciny. 2019;18(2):107–18. (In Russ.) DOI: https://doi.org/10.20538/1682-0363-2019-2-107-118 3. Orellana G, Slachevsky A. Executive functioning in schizophrenia. Front Psychiatry. 2013;4:35. DOI: https://doi.org/10.3389/fpsyt.2013.00035 4. Rekhi G, Saw YE, Lim K, et al. Impact of Cognitive Impairments on Health-Related Quality of Life in Schizophrenia. Brain Sci. 2023;13(2):215. DOI: https://doi.org/10.3390/brainsci13020215 5. Green MF. Impact of cognitive and social cognitive impairment on functional outcomes in patients with schizophrenia. J Clin Psychiatry. 2016;77(2):8–11. DOI: https://doi.org/10.4088/JCP.14074su1c.02 6. Roux P, Urbach M, Fonteneau S, et al. Screening for cognitive deficits with the Evaluation of Cognitive Processes involved in Disability in Schizophrenia scale. Clin Rehabil. 2019;33(1):113–9. DOI: https://doi.org/10.1177/0269215518787324 7. Keefe RS, Harvey PD, Goldberg TE. Norms and standardization of the Brief Assessment of Cognition in Schizophrenia (BACS). Schizophr Res. 2008;102(1–3):108–15. DOI: https://doi.org/10.1016/j.schres.2008.03.024 8. Melnikova TS, Sarkisyan VV, Gurovich IYa. [EEG alpha-rhythm in the first episode of paranoid schizophrenia]. Social'naya i klinicheskaya psihiatriya. 2013;23(1):40–5. (In Russ.) 9. Spektor VA, Mnatsakanian EV, Shmukler AB. [Facial affect recognition in patients with schizophrenia and schizoaffective disorder: Alterations of P100 and N170]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2020;(6):82–92. (In Russ.) DOI: https://doi.org/10.24411/1560-957Х-2020-10610 10. Perrottelli A, Giordano GM, Brando F, et al. EEG-Based Measures in At-Risk Mental State and Early Stages of Schizophrenia: A Systematic Review. Front Psychiatry. 2021;12:653642. DOI: https://doi.org/10.3389/fpsyt.2021.653642 11. Kaltiainen H, Helle L, Liljeström M, et al. Theta-Band Oscillations as an Indicator of Mild Traumatic Brain Injury. Brain Topogr. 2018;31(6):1037–46. DOI: https://doi.org/10.1007/s10548-018-0667-2 12. Cao Y, Han C, Peng X, et al. Correlation Between Resting Theta Power and Cognitive Performance in Patients With Schizophrenia. Front Hum Neurosci. 2022;16:853994. DOI: https://doi.org/10.3389/fnhum.2022.853994 13. Moran LV, Hong LE. High vs low frequency neural oscillations in schizophrenia. Schizophr Bull. 2011;37(4):659–63. DOI: https://doi.org/10.1093/schbul/sbr056 14. Kornetov AN, Yazykov KG, Kornetova EG, et al. [Normative assessment of cognitive functions with on the Brief assessment of cognition in schizophrenia (BACS) scale in the tomsk population: constitutional factors of variability]. Sibirskij psihologicheskij zhurnal. 2021;(82):137–52. (In Russ.) DOI: https://doi.org/10.17223/17267080/82/8 15. Mosolov SN. Shkaly psihometricheskoj ocenki simptomatiki shizofrenii i koncepcija pozitivnyh i negativnyh rasstrojstv. Moscow: Moskovskaja tipografija; 2001. 238 p. (In Russ.) 16. Khokhlov NA, Burova AV. Modifikacija oprosnika M. Annett dlja ocenki funkcional'noj asimmetrii: standartizacija i psihometricheskie harakteristiki. Aprobaciya. 2014;(8):65–73. (In Russ.) 17. Jawabri KH, Sharma S. Physiology, Cerebral Cortex Functions. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. URL: https://www.ncbi.nlm.nih.gov/books/NBK538496/ (accessed on: 13.09.2023). 18. Dobbins C, Russell EW. Left temporal lobe brain damage pattern on the Wechsler Adult Intelligence Scale. J Clin Psychol. 1990;46(6):863–8. DOI: https://doi.org/10.1002/1097-4679(199011)46:6<863::aid-jclp2270460628>3.0.co;2-m 19. Wichniak A, Okruszek L, Linke M, et al. Electroencephalographic theta activity and cognition in schizophrenia: preliminary results. World J Biol Psychiatry. 2015;16(3):206–10. DOI: https://doi.org/10.3109/15622975.2014.96614 20. Venables NC, Bernat EM, Sponheim SR. Genetic and disorder-specific aspects of resting state EEG abnormalities in schizophrenia. Schizophr Bull. 2009;35(4):826–39. DOI: https://doi.org/10.1093/schbul/sbn021 21. Zenkov LR. Klinicheskaja jelektrojencefalografija (s jelementami jepileptologii). Moscow; MEDpress-inform; 2017. 360 p. (In Russ.) 22. Tsuchida TN, Acharya JN, Halford JJ, et al. American Clinical Neurophysiology Society: EEG Guidelines Introduction. Neurodiagn J. 2016;56(4):231–4. DOI: https://doi.org/10.1080/21646821.2016.1245513 23. McLoughlin G, Gyurkovics M, Palmer J, et al. Midfrontal Theta Activity in Psychiatric Illness: An Index of Cognitive Vulnerabilities Across Disorders. Biol Psychiatry. 2022;91(2):173–82. DOI: https://doi.org/10.1016/j.biopsych.2021.08.020 24. Headley DB, Paré D. Common oscillatory mechanisms across multiple memory systems. NPJ Sci Learn. 2017;2:1. DOI: https://doi.org/10.1038/s41539-016-0001-2 25. Rodriguez-Martinez EI, Barriga-Paulino CI, Rojas-Benjumea MA, et al. Spontaneous theta rhythm and working memory co-variation during child development. Neurosci Lett. 2013;550:134–8. DOI: https://doi.org/10.1016/j.neulet.2013.06.054 26. Stella F, Treves A. Associative memory storage and retrieval: involvement of theta oscillations in hippocampal information processing. Neural Plast. 2011;20(11):683961. DOI: https://doi.org/10.1155/2011/683961 27. Keune PM, Hansen S, Sauder T, et al. Frontal brain activity and cognitive processing speed in multiple sclerosis: An exploration of EEG neurofeedback training. Neuroimage Clin. 2019;22:101716. DOI: https://doi.org/10.1016/j.nicl.2019.101716



DOI: http://dx.doi.org/10.34757/1560-957X.2023.27.4.003

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM