Brain mechanisms of cognitive task-solving in individuals with Bipolar Affective Disorder during modeling of a moral stress situation

Full Text:   Subscribers Only

Suggested citation:

Bulygina VG, Isangalieva IM, Vartanov AV. [Brain mechanisms of cognitive task-solving in individuals with Bipolar Affective Disorder during modeling of a moral stress situation]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2024;(1):57-66. Russian

Abstract

In a controlled experiment, in order to determine the reaction of brain structures to situational stress, a study of solving moral dilemmas and cognitive tasks by persons with bipolar affective disorder was conducted. 25 people suffering from bipolar affective disorder have been examined. Electroencephalography was conducted before and after making moral choices, used as stressors. It was revealed that after making moral decisions, the group with high stress levels exhibited increased activity in brain structures responsible for emotional, cognitive, and social regulation, as well as changes in activity in the structures of the limbic system and thalamus, which may influence other systems of the organism, including the cardiovascular one. Individuals with lower stress levels showed less active response to situations involving moral decision-making. The results emphasize the importance of understanding brain functioning in patients with bipolar affective disorder and specificity of neuronal foundations of decision-making in stressful situations.

Keywords electroencephalography; bipolar affective disorders; stress; moral stress; brain activity

References

1. Malkoff-Schwartz S, Frank E, Anderson B, et al. Stressful life events and social rhythm disruption in the onset of manic and depressive bipolar episodes: a preliminary investigation. Arch Gen Psychiatry. 1998;55(8):702–7. DOI: https://doi.org/10.1001/archpsyc.55.8.702 2. Miklowitz DJ, Johnson SL. The psychopathology and treatment of bipolar disorder. Annu Rev Clin Psychol. 2006;2:199–235. DOI: https://doi.org/10.1146/annurev.clinpsy.2.022305.095332 3. Selye H. The stress of life. New York; Toronto; London: McGraw-Hill Book Company, Inc., 1956. 324 р. 4. Burke HM, Davis MC, Otte C, Mohr DC. Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology. 2005;30(9):846–56. DOI: https://doi.org/10.1016/j.psyneuen.2005.02.010 5. Shields GS, Sazma MA, Yonelinas AP. The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neurosci Biobehav Rev. 2016;68:651–68. DOI: https://doi.org/10.1016/j.neubiorev.2016.06.038 6. Etkin A, Prater KE, Schatzberg AF, et al. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry. 2009;66(12):1361–72. DOI: https://doi.org/10.1001/archgenpsychiatry.2009.104 7. Sapolsky RM. Stress and plasticity in the limbic system. Neurochem Res. 2003;28(11):1735–42. DOI: https://doi.org/10.1023/a:1026021307833 8. Morley G, Ives J, Bradbury-Jones C, Irvine F. What is ‘moral distress’? A narrative synthesis of the literature. Nurs Ethics. 2019;26(3):646–62. DOI: https://doi.org/10.1177/0969733017724354 9. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(5):385–96. PMID: 6668417 10. Fuentes-García JP, Pereira T, Castro MA, et al. Psychophysiological stress response of adolescent chess players during problem-solving tasks. Physiol Behav. 2019;209:112609. DOI: https://doi.org/10.1016/j.physbeh.2019.112609 11. Schakel L, Veldhuijzen DS, Crompvoets PI, et al. Effectiveness of stress-reducing interventions on the response to challenges to the immune system: a meta-analytic review. Psychother Psychosom. 2019;88(5):274–86. DOI: https://doi.org/10.1159/000501645 12. Starcke K, Polzer C, Wolf OT, Brand M. Does stress alter everyday moral decision-making? Psychoneuroendocrinology. 2011;36(2):210–9. DOI: https://doi.org/10.1016/j.psyneuen.2010.07.010 13. Moore AB, Clark BA, Kane MJ. Who shalt not kill? Individual differences in working memory capacity, executive control, and moral judgment. Psychol Sci. 2008;19(6):549–57. DOI: https://doi.org/10.1111/j.1467-9280.2008.02122.x 14. Reynolds SJ, Owens BP, Rubenstein AL. Moral stress: Considering the nature and effects of managerial moral uncertainty. J Bus Ethics. 2012;106(4):491–502. DOI: https://doi.org/10.1007/s10551-011-1013-8 15. Lützen K, Blom T, Ewalds-Kvist B, Winch S. Moral stress, moral climate and moral sensitivity among psychiatric professionals. Nurs Ethics. 2010;17(2):213–24. DOI: https://doi.org/10.1177/0969733009351951 16. Greene JD, Sommerville RB, Nystrom LE, et al. An fMRI investigation of emotional engagement in moral judgment. Science. 2001;293(5537):2105–8. DOI: https://doi.org/10.1126/science.1062872 17. Lupien SJ, Maheu F, Tu M, et al. The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain Cogn. 2007;65(3):209–37. DOI: https://doi.org/10.1016/j.bandc.2007.02.007 18. Moll J, de Oliveira-Souza R, Eslinger PJ, et al. The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions. J Neurosci. 2002;22(7):2730–6. DOI: https://doi.org/10.1523/JNEUROSCI.22- 07-02730.2002 19. Vartanov AV. A new method of localizing brain activity using the scalp eeg data. Procedia Comput Sci. 2022;213(6):41–8. DOI: https://doi.org/10.1016/j.procs.2022.11.036 20. Vartanov AV. Novyi podkhod k prostranstvennoi lokalizatsii elektricheskoi aktivnosti po dannym EEG. Epilepsiya i paroksizmal'nye sostoyaniya. 2023;15(4):326–38. (In Russ.) DOI: https://doi.org/10.17749/2077-8333/epi.par.con.2023.177 21. McEwen BS. Brain on stress: how the social environment gets under the skin. Proc Nat Acad Sci U S A. 2012;109(Suppl 2):17180–5. DOI: https://doi.org/10.1073/pnas.1121254109 22. McEwen BS, Morrison JH. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron. 2013;79(1):16–29. DOI: https://doi.org/10.1016/j.neuron.2013.06.028 23. McEwen BS, Nasca C, Gray JD. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41(1):3–23. DOI: https://doi.org/10.1038/npp.2015.171 24. Arnsten AFT. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410–22. DOI: https://doi.org/10.1038/nrn2648 25. Goldman-Rakic PS. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci. 1996;351(1346):1445–53. DOI: https://doi.org/10.1098/rstb.1996.0129 26. Jensen AR. How much can we boost IQ and scholastic achievement? Harvard Educational Review. 1969;39(1):1–123. DOI: https://doi.org/10.17763/HAER.39.1.L3U15956627424K7 27. Turner AI, Smyth N, Hall SJ, et al. Psychological stress reactivity and future health and disease outcomes: A systematic review of prospective evidence. Psychoneuroendocrinology. 2020;114:104599. DOI: https://doi.org/10.1016/j.psyneuen.2020.104599 28. Venkatraman V, Rosati AG, Taren AA, Huettel SA. Resolving response, decision, and strategic control: evidence for a functional topography in dorsomedial prefrontal cortex. J Neurosci. 2009;29(42):13158–64. DOI: https://doi.org/10.1523/JNEUROSCI.2708-09.2009 29. Ramezanpour H, Fallah M. The role of temporal cortex in the control of attention. Curr Res Neurobiol. 2022;3:100038. DOI: https://doi.org/10.1016/j.crneur.2022.100038 30. Deppe M, Schwindt W, Kugel H, et al. Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. J Neuroimaging. 2005;15(2):171–82. DOI: https://doi.org/10.1177/1051228405275074 31. Decety J, Jackson PL. The functional architecture of human empathy. Behav Cogn Neurosci Rev. 2004;3(2):71–100. DOI: https://doi.org/10.1177/1534582304267187 32. Aharoni E, Vincent GM, Harenski CL, et al. Neuroprediction of future rearrest. Proc Nat Acad Sci U S A. 2013;110(15):6223–8. DOI: https://doi.org/10.1073/pnas.1219302110 33. Phan KL, Wager T, Taylor SF, Liberzon I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage. 2002;16(2):331–48. DOI: https://doi.org/10.1006/nimg.2002.1087 34. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol. 2005;5(3):243–51. DOI: https://doi.org/10.1038/nri1571 35. Lamb K, Gallagher K, McColl R, et al. Exercise-induced decrease in insular cortex rCBF during postexercise hypotension. Med Sci Sports Exerc. 2007;39(4):672–9. DOI: https://doi.org/10.1249/mss.0b013e31802f04e0 36. Baliki MN, Geha PY, Apkarian AV. Parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol. 2009;101(2):875–87. DOI: https://doi.org/10.1152/jn.91100.2008 37. Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34(2):163–71. DOI: https://doi.org/10.1016/j.psyneuen.2008.10.026 38. Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implicatons for therapy. J Affect Disord. 2001;62(1–2):77–91. DOI: https://doi.org/10.1016/s0165-0327(00)00352-9 39. Schoofs D, Pabst S, Brand M, Wolf OT. Working memory is differentially affected by stress in men and women. Behav Brain Res. 2013;241:144–53. DOI: https://doi.org/10.1016/j.bbr.2012.12.004 40. Steriade M, Llinás RR. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988;68(3):649–742. DOI: https://doi.org/10.1152/physrev.1988.68.3.649 41. Stein T, Moritz C, Quigley M, et al. Functional connectivity in the thalamus and hippocampus studied with functional MR imaging. AJNR Am J Neuroradiol. 2000;21(8):1397–401. PMID: 11003270

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM