Neurotrophic factors: the key to understanding depressive disorders
Full Text:
Subscribers Only
|
Suggested citation:
Chernysheva AA, Gadisov TG, Zobkova NV, et al. [Neurotrophic factors: the key to understanding depressive disorders]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2024;(5):18-27. Russian
The purpose of this scientific review is to determine the role of neurotrophins such as BDNF, NGF and NT-3 in the pathogenesis of depressive disorders. The possibility of using neurotrophins as markers in the diagnosis of depressive disorders, as well as their use in therapy as molecules with an antidepressant effect. Understanding the mechanisms of action of neurotrophins and their role in the pathogenesis of depression can help improve approaches to the diagnosis of depressive disorders and develop effective methods of their treatment, which is important for improving the lives of patients with these diseases.
Keywords mental disorders; depression; neurotrophins; BDNF; NGF; NT-3
1. McCarron RM, Shapiro B, Rawles J, Luo J. Depression. Ann Intern Med. 2021;174(5):ITC65–80. DOI: 10.7326/AITC202105180 2. Mental Health and COVID-19: Early evidence of the pandemic’s impact. World Health Organization (WHO). 2022. URL: https://iris.who.int/bitstream/handle/10665/352189/WHO-2019-nCoV-Sci-Brief-Mental-health-2022.1-eng.pdf?sequence=1 (accessed on: 20.06.2024). 3. Marwaha S, Palmer E, Suppes T, et al. Novel and emerging treatments for major depression. Lancet. 2023;401(10371):141–53. DOI: 10.1016/S0140-6736(22)02080-3 4. Penninx BW, Pine DS, Holmes EA, et al. Anxiety disorders. Lancet. 2021;397(10277):914–27. DOI: 10.1016/S0140-6736(21)00359-7 5. Davis LL, Schein J, Cloutier M, et al. The Economic Burden of Posttraumatic Stress Disorder in the United States From a Societal Perspective. J Clin Psychiatry. 2022;83(3):21m14116. DOI: 10.4088/JCP.21m14116 6. Bremner J, Vythilingam M, Vermetten E, et al. Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry. 2002;51(4):273–9. DOI: 10.1016/s0006-3223(01)01336-1 7. Bremner JD, Randall P, Scott TM, et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry. 1995;152(7):973–81. DOI: 10.1176/ajp.152.7.973 8. Gurvits TV, Shenton ME, Hokama H, et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry. 1996;40(11):1091–9. DOI: 10.1016/S0006-3223(96)00229-6 9. Radley JJ, Rocher AB, Miller M, et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex. 2006;16(3):313–20. DOI: 10.1093/cercor/bhi104 10. Watanabe Y, Gould E, Daniels DC, et al. Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol. 1992;222(1):157–62. DOI: 10.1016/0014-2999(92)90830-w 11. Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45(9):1085–98. DOI: 10.1016/s0006-3223(99)00041-4 12. Stockmeier CA, Mahajan GJ, Konick LC, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry. 2004;56(9):640–50. DOI: 10.1016/j.biopsych.2004.08.022 13. Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. 2008;64(10):86370. DOI: 10.1016/j.biopsych.2008.06.008 14. Liston C, Miller MM, Goldwater DS, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26(30):7870–4. DOI: 10.1523/JNEUROSCI.1184-06.2006 15. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11(6):1164–78. DOI: 10.5114/aoms.2015.56342 16. Dechant G, Neumann H. Neurotrophins. Adv Exp Med Biol. 2002;513:303–34. DOI: 10.1007/978-1-4615-0123-7_11 17. Ghassabian A, Sundaram R, Chahal N, et al. Determinants of neonatal brain-derived neurotrophic factor and association with child development. Dev Psychopathol. 2017;29(4):1499–511. DOI: 10.1017/S0954579417000414 18. Jabbi M, Cropp B, Nash T, et al. BDNF Val66Met polymorphism tunes frontolimbic circuitry during affective contextual learning. Neuroimage. 2017;162:373–83. DOI: 10.1016/j.neuroimage.2017.08.080 19. Youssef MM, Underwood MD, Huang YY, et al. Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide. Int J Neuropsychopharmacol. 2018;21(6):528–38. DOI: 10.1093/ijnp/pyy008 20. Chen KS, Nishimura MC, Armanini MP, et al. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci. 1997;17(19):7288–96. DOI: 10.1523/JNEUROSCI.17-19-07288.1997 21. Syed Z, Dudbridge F, Kent L. An investigation of the neurotrophic factor genes GDNF, NGF, and NT3 in susceptibility to ADHD. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(3):375–8. DOI: 10.1002/ajmg.b.30459 22. Lang UE, Hellweg R, Bajbouj M, et al. Gender-dependent association of a functional NGF polymorphism with anxiety-related personality traits. Pharmacopsychiatry. 2008;41(5):196–9. DOI: 10.1055/s-0028-1082070 23. Cui D, Zhang H, Yang BZ, et al. Variation in NGFB is associated with primary affective disorders in women. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(4):401–12. DOI: 10.1002/ajmg.b.31175 24. Ohtsuka M, Fukumitsu H, Furukawa S. Neurotrophin-3 stimulates neurogenetic proliferation via the extracellular signal-regulated kinase pathway. J Neurosci Res. 2009;87(2):301–6. DOI: 10.1002/jnr.21855 25. Gratto KA, Verge VM. Neurotrophin-3 down-regulates trkA mRNA, NGF high-affinity binding sites, and associated phenotype in adult DRG neurons. Eur J Neurosci. 2003;18(6):1535–48. DOI: 10.1046/j.1460-9568.2003.02881.x 26. Paul J, Gottmann K, Lessmann V. NT-3 regulates BDNF-induced modulation of synaptic transmission in cultured hippocampal neurons. Neuroreport. 2001;12(12):2635–9. DOI: 10.1097/00001756-200108280-00010 27. Ullal GR, Michalski B, Xu B, et al. NT-3 modulates BDNF and proBDNF levels in naïve and kindled rat hippocampus. Neurochem Int. 2007;50(6):866–71. DOI: 10.1016/j.neuint.2007.02.009 28. Armengol L, Gratacòs M, Pujana MA, et al. 5' UTR-region SNP in the NTRK3 gene is associated with panic disorder. Mol Psychiatry. 2002;7(9):928–30. DOI: 10.1038/sj.mp.4001134 29. Muiños-Gimeno M, Guidi M, Kagerbauer B, et al. Allele variants in functional MicroRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders. Hum Mutat. 2009;30(7):1062–71. DOI: 10.1002/humu.21005 30. Filho CB, Jesse CR, Donato F, et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na(+), K(+)-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience. 2015;289:367–80. DOI: 10.1016/j.neuroscience.2014.12.048 31. Hu X, Zhao HL, Kurban N, et al. Reduction of BDNF Levels and Biphasic Changes in Glutamate Release in the Prefrontal Cortex Correlate with Susceptibility to Chronic Stress-Induced Anhedonia. eNeuro. 2023;10(11):ENEURO.0406-23.2023. DOI: 10.1523/ENEURO.0406-23.2023 32. Thompson Ray M, Weickert CS, Wyatt E, et al. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 2011;36(3):195–203. DOI: 10.1503/jpn.100048 33. Smith MA, Makino S, Kvetnansky R, et al. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci. 1995;15(3(1)):1768–77. DOI: 10.1523/JNEUROSCI.15-03-01768.1995 34. Lee BH, Kim H, Park SH, Kim YK. Decreased plasma BDNF level in depressive patients. J Affect Disord. 2007;101(1–3):239–44. DOI: 10.1016/j.jad.2006.11.005 35. Mikoteit T, Beck J, Eckert A, et al. High baseline BDNF serum levels and early psychopathological improvement are predictive of treatment outcome in major depression. Psychopharmacology (Berl). 2014;231(15):2955–65. DOI: 10.1007/s00213-014-3475-8 36. Piccinni A, Marazziti D, Catena M, et al. Plasma and serum brain-derived neurotrophic factor (BDNF) in depressed patients during 1 year of antidepressant treatments. J Affect Disord. 2008;105(1–3):279–83. DOI: 10.1016/j.jad.2007.05.005 37. Kreinin A, Lisson S, Nesher E, et al. Blood BDNF level is gender specific in severe depression. PLoS One. 2015;10(5):e0127643. DOI: 10.1371/journal.pone.0127643 38. Kurita M, Nishino S, Kato M, et al. Plasma brain-derived neurotrophic factor levels predict the clinical outcome of depression treatment in a naturalistic study. PLoS One. 2012;7(6):e39212. DOI: 10.1371/journal.pone.0039212 39. Zelada MI, Garrido V, Liberona A, et al. Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Major Depressive Disorder (MDD): A Systematic Review. Int J Mol Sci. 2023;24(19):14810. DOI: 10.3390/ijms241914810 40. Diniz BS, Teixeira AL, Machado-Vieira R, et al. Reduced serum nerve growth factor in patients with late-life depression. Am J Geriatr Psychiatry. 2013;21(5):493–6. DOI: 10.1016/j.jagp.2013.01.014 41. Salsabil L, Shahriar M, Islam SMA, et al. Higher serum nerve growth factor levels are associated with major depressive disorder pathophysiology: a case-control study. J Int Med Res. 2023;51(4):3000605231166222. DOI: 10.1177/03000605231166222 42. Xiong P, Zeng Y, Wan J, et al. The role of NGF and IL-2 serum level in assisting the diagnosis in first episode schizophrenia. Psychiatry Res. 2011;189(1):72–6. DOI: 10.1016/j.psychres.2010.12.017 43. Banerjee R, Ghosh AK, Ghosh B, et al. Decreased mRNA and Protein Expression of BDNF, NGF, and their Receptors in the Hippocampus from Suicide: An Analysis in Human Postmortem Brain. Clin Med Insights Pathol. 2013;6:1–11. DOI: 10.4137/CMPath.S12530 44. Dwivedi Y, Mondal AC, Rizavi HS, et al. Suicide brain is associated with decreased expression of neurotrophins. Biol Psychiatry. 2005;58(4):315–24. DOI: 10.1016/j.biopsych.2005.04.014 45. Wiener CD, de Mello Ferreira S, Pedrotti Moreira F, et al. Serum levels of nerve growth factor (NGF) in patients with major depression disorder and suicide risk. J Affect Disord. 2015;184:245–8. DOI: 10.1016/j.jad.2015.05.067 46. Otsuki K, Uchida S, Watanuki T, et al. Altered expression of neurotrophic factors in patients with major depression. J Psychiatr Res. 2008;42(14):1145–53. DOI: 10.1016/j.jpsychires.2008.01.010 47. Arabska J, Łucka A, Strzelecki D, et al. In schizophrenia serum level of neurotrophin-3 (NT-3) is increased only if depressive symptoms are present. Neurosci Lett. 2018;684:152–5. DOI: 10.1016/j.neulet.2018.08.005 48. Loch AA, Zanetti MV, de Sousa RT, et al. Elevated neurotrophin-3 and neurotrophin 4/5 levels in unmedicated bipolar depression and the effects of lithium. Prog Neuropsychopharmacol Biol Psychiatry. 2015;56:243–6. DOI: 10.1016/j.pnpbp.2014.09.014 49. Walz JC, Andreazza AC, Frey BN, et al. Serum neurotrophin-3 is increased during manic and depressive episodes in bipolar disorder. Neurosci Lett. 2007;415(1):87–9. DOI: 10.1016/j.neulet.2007.01.002 50. Wysokiński A. Serum levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in depressed patients with schizophrenia. Nord J Psychiatry. 2016;70(4):267–71. DOI: 10.3109/08039488.2015.1087592 51. Munkholm K, Pedersen BK, Kessing LV, et al. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients. Psychoneuroendocrinology. 2014;47:199–211. DOI: 10.1016/j.psyneuen.2014.05.011 52. Hock C, Heese K, Müller-Spahn F, et al. Increased cerebrospinal fluid levels of neurotrophin 3 (NT-3) in elderly patients with major depression. Mol Psychiatry. 2000;5(5):510–3. DOI: 10.1038/sj.mp.4000743 53. Kverno KS, Mangano E. Treatment-Resistant Depression: Approaches to Treatment. J Psychosoc Nurs Ment Health Serv. 2021;59(9):7–11. DOI: 10.3928/02793695-20210816-01 54. Mosiołek A, Mosiołek J, Jakima S, et al. Effects of Antidepressant Treatment on Neurotrophic Factors (BDNF and IGF-1) in Patients with Major Depressive Disorder (MDD). J Clin Med. 2021;10(15):3377. DOI: 10.3390/jcm10153377 55. Zhou C, Zhong J, Zou B, et al. Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS One. 2017;12(2):e0172270. DOI: 10.1371/journal.pone.0172270 56. Song X, Zhang F, Cao L, et al. Effect of fluoxetine on nerve growth factor expression in hippocampus CA1, CA3 and DG of rat depression model. Med J Wuhan University. 2015;36(2):185–8. DOI:10.14188/j.1671-8852.2015.02.005 57. Schulte-Herbrüggen O, Fuchs E, Abumaria N, et al. Effects of escitalopram on the regulation of brain-derived neurotrophic factor and nerve growth factor protein levels in a rat model of chronic stress. J Neurosci Res. 2009;87(11):2551–60. DOI: 10.1002/jnr.22080 58. Hellweg R, Ziegenhorn A, Heuser I, et al. Serum concentrations of nerve growth factor and brain-derived neurotrophic factor in depressed patients before and after antidepressant treatment. Pharmacopsychiatry. 2008;41(2):66–71. DOI: 10.1055/s-2007-1004594 59. Martino M, Rocchi G, Escelsior A, et al. NGF serum levels variations in major depressed patients receiving duloxetine. Psychoneuroendocrinology. 2013;38(9):1824–28. DOI: 10.1016/j.psyneuen.2013.02.009 60. Mishra BR, Maiti R, Nath S, et al. Effect of Sertraline, Dosulepin, and Venlafaxine on Non-BDNF Neurotrophins in Patients With Depression: A Cohort Study. J Clin Psychopharmacol. 2019;39(3):220–5. DOI: 10.1097/JCP.0000000000001022 61. Shirayama Y, Chen AC, Nakagawa S, et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22(8):3251–61. DOI: 10.1523/JNEUROSCI.22-08-03251.2002 62. Martin-Iverson MT, Todd KG, Altar CA. Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine. J Neurosci. 1994;14(3(1)):1262–70. DOI: 10.1523/JNEUROSCI.14-03-01262.1994 63. McGeary JE, Gurel V, Knopik VS, et al. Effects of nerve growth factor (NGF), fluoxetine, and amitriptyline on gene expression profiles in rat brain. Neuropeptides. 2011;45(5):317–22. DOI: 10.1016/j.npep.2011.06.002 64. Overstreet DH, Fredericks K, Knapp D, et al. Nerve growth factor (NGF) has novel antidepressant-like properties in rats. Pharmacol Biochem Behav. 2010;94(4):553–60. DOI: 10.1016/j.pbb.2009.11.010 65. Haenisch B, Bilkei-Gorzo A, Caron MG, Bönisch H. Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression. J Neurochem. 2009;111(2):403–16. DOI: 10.1111/j.1471-4159.2009.06345.x 66. Koshkina A, Dudnichenko T, Baranenko D, et al. Effects of Vitamin D3 in Long-Term Ovariectomized Rats Subjected to Chronic Unpredictable Mild Stress: BDNF, NT-3, and NT-4 Implications. Nutrients. 2019;11(8):1726. DOI: 10.3390/nu11081726
Article Metrics
Metrics powered by PLOS ALM