The mental health consequences of prenatal stress: current understanding of mechanisms

Full Text:   Subscribers Only

Suggested citation:

Abramova OV, Zorkina YaA, Ushakova VM, et al. [The mental health consequences of prenatal stress: current understanding of mechanisms]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2024;(6):92-106. Russian

Abstract

In this scientific review, modern concepts of the pathophysiological mechanisms of the impact of prenatal stress on human mental health are examined in order to summarize the data. A total of 125 articles were selected that described the consequences of prenatal stress on the development of the nervous system and the main physiological and molecular mechanisms by which its effects are realized. The results indicate that the fetal brain is very vulnerable to stressful experiences of the expectant mother during pregnancy. Prenatal stress leads to impaired development of the nervous system and an increased risk of neuropsychiatric disorders, which is a serious burden on society. These effects are mediated by several mechanisms that function simultaneously in concert with each other to form a psychopathologic phenotype. Understanding these mechanisms may contribute to preventing the long-term negative effects of prenatal stress.

Keywords prenatal stress; psychiatric disorders; neurodevelopment; environmental factors; pathophysiological mechanisms

References

1. Creutzberg KC, Sanson A, Viola TW, et al. Long-lasting effects of prenatal stress on HPA axis and inflammation: A systematic review and multilevel meta-analysis in rodent studies. Neurosci Biobehav Rev. 2021;127:270–83. DOI: 10.1016/j.neubiorev.2021.04.032 2. Miguel PM, Pereira LO, Silveira PP, Meaney MJ. Early environmental influences on the development of children's brain structure and function. Dev Med Child Neurol. 2019;61(10):1127–33. DOI: 10.1111/dmcn.14182 3. Monk C, Lugo-Candelas C, Trumpff C. Prenatal Developmental Origins of Future Psychopathology: Mechanisms and Pathways. Annu Rev Clin Psychol. 2019;15:317–44. DOI: 10.1146/annurev-clinpsy-050718-095539 4. Krontira AC, Cruceanu C, Binder EB. Glucocorticoids as Mediators of Adverse Outcomes of Prenatal Stress. Trends Neurosci. 2020;43(6):394–405. DOI: 10.1016/j.tins.2020.03.008 5. Haq SU, Bhat UA, Kumar A. Prenatal stress effects on offspring brain and behavior: Mediators, alterations and dysregulated epigenetic mechanisms. J Biosci. 2021;46:34. PMID: 33859069 6. Roshan-Milani S, Seyyedabadi B, Saboory E, et al. Prenatal stress and increased susceptibility to anxiety-like behaviors: role of neuroinflammation and balance between GABAergic and glutamatergic transmission. Stress. 2021;24(5):481–95. DOI: 10.1080/10253890.2021.1942828 7. Veru F, Laplante DP, Luheshi G, King S. Prenatal maternal stress exposure and immune function in the offspring. Stress. 2014;17(2):133–48. DOI: 10.3109/10253890.2013.876404 8. Evans NP, Bellingham M, Robinson JE. Prenatal programming of neuroendocrine reproductive function. Theriogenology. 2016;86(1):340–8. DOI: 10.1016/j.theriogenology.2016.04.047 9. Magariños AM, Schaafsma SM, Pfaff DW. Impacts of stress on reproductive and social behaviors. Front Neuroendocrinol. 2018;49:86–90. DOI: 10.1016/j.yfrne.2018.01.002 10. McCreary JK, Metz GAS. Environmental enrichment as an intervention for adverse health outcomes of prenatal stress. Environ Epigenet. 2016;2(3):dvw013. DOI: 10.1093/eep/dvw013 11. Abramova OV. Neurotransmitter system activity and behavioral phenotype features in rats with ultrasonic prenatal stress experience [PhD thesis]. [Moscow (Russia)]: FGBU “Nacional`ny`j medicinskij issledovatel`skij centr psixiatrii i narkologii im. V.P. Serbskogo” Minzdrava Rossii [V.P. Serbsky National Medical Research Center for Psychiatry and Narcology of the Ministry of Health of the Russian Federation]; 2023. 24 p. (In Russ.) 12. Rehm J, Shield KD. Global Burden of Disease and the Impact of Mental and Addictive Disorders. Curr Psychiatry Rep. 2019;21(2):10. DOI: 10.1007/s11920-019-0997-0 13. Howard LM, Piot P, Stein A. No health without perinatal mental health. Lancet. 2014;384(9956):1723–4. DOI: 10.1016/S0140-6736(14)62040-7 14. Loomans EM, van Dijk AE, Vrijkotte TG, et al. Psychosocial stress during pregnancy is related to adverse birth outcomes: results from a large multi-ethnic community-based birth cohort. Eur J Public Health. 2013;23(3):485–91. DOI: 10.1093/eurpub/cks097 15. Underwood L, Waldie K, D'Souza S, et al. A review of longitudinal studies on antenatal and postnatal depression. Arch Womens Ment Health. 2016;19(5):711–20. DOI: 10.1007/s00737-016-0629-1 16. Glover V. Maternal depression, anxiety and stress during pregnancy and child outcome; what needs to be done. Best Pract Res Clin Obstet Gynaecol. 2014;28(1):25–35. DOI: 10.1016/j.bpobgyn.2013.08.017 17. Buitelaar JK, Huizink AC, Mulder EJ, et al. Prenatal stress and cognitive development and temperament in infants. Neurobiol Aging. 2003;24(Suppl 1):S53–60. DOI: 10.1016/s0197-4580(03)00050-2 18. Lautarescu A, Craig MC, Glover V. Prenatal stress: Effects on fetal and child brain development. Int Rev Neurobiol. 2020;150:17–40. DOI: 10.1016/bs.irn.2019.11.002 19. Schepanski S, Buss C, Hanganu-Opatz IL, Arck PC. Prenatal Immune and Endocrine Modulators of Offspring's Brain Development and Cognitive Functions Later in Life. Front Immunol. 2018;9:2186. DOI: 10.3389/fimmu.2018.02186 20. Beversdorf DQ, Stevens HE, Jones KL. Prenatal Stress, Maternal Immune Dysregulation, and Their Association With Autism Spectrum Disorders. Curr Psychiatry Rep. 2018;20(9):76. DOI: 10.1007/s11920-018-0945-4 21. Talge NM, Neal C, Glover V. Early Stress, Translational Research and Prevention Science Network: Fetal and Neonatal Experience on Child and Adolescent Mental Health. Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry. 2007;48(3–4):245–61. DOI: 10.1111/j.1469-7610.2006.01714.x 22. van den Bergh BRH, Dahnke R, Mennes M. Prenatal stress and the developing brain: Risks for neurodevelopmental disorders. Dev Psychopathol. 2018;30(3):743–62. DOI: 10.1017/S0954579418000342 23. Sosnowski DW, Booth C, York TP, et al. Maternal prenatal stress and infant DNA methylation: A systematic review. Dev Psychobiol. 2018;60(2):127–39. DOI: 10.1002/dev.21604 24. Hill J, Pickles A, Wright N, et al. Predictions of children's emotionality from evolutionary and epigenetic hypotheses. Sci Rep. 2019;21(9(1)):2519. DOI: 10.1038/s41598-019-39513-7 25. Pluess M, Belsky J. Prenatal programming of postnatal plasticity? Dev Psychopathol. 2011;23(1):29–38. DOI: 10.1017/S0954579410000623 26. Hartman S, Belsky J. Prenatal stress and enhanced developmental plasticity. J Neural Transm (Vienna). 2018;125(12):1759–79. DOI: 10.1007/s00702-018-1926-9 27. Levy MJF, Boulle F, Steinbusch HW, et al. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl). 2018;235(8):2195–220. DOI: 10.1007/s00213-018-4950-4 28. Pallarés ME, Antonelli MC. Prenatal Stress and Neurodevelopmental Plasticity: Relevance to Psychopathology. Adv Exp Med Biol. 2017;1015:117–29. DOI: 10.1007/978-3-319-62817-2_7 29. Fatima M, Srivastav S, Ahmad MH, Mondal AC. Effects of chronic unpredictable mild stress induced prenatal stress on neurodevelopment of neonates: Role of GSK-3β. Sci Rep. 2019;4(9(1)):1305. DOI: 10.1038/s41598-018-38085-2 30. Shallie PD, Naicker T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci. 2019;73:41–9. DOI: 10.1016/j.ijdevneu.2019.01.003 31. Shearer FJG, Wyrwoll CS, Holmes MC. The Role of 11β-Hydroxy Steroid Dehydrogenase Type 2 in Glucocorticoid Programming of Affective and Cognitive Behaviours. Neuroendocrinology. 2019;109(3):257–65. DOI: 10.1159/000499660 32. Stirrat LI, Sengers BG, Norman JE, et al. Transfer and Metabolism of Cortisol by the Isolated Perfused Human Placenta. J Clin Endocrinol Metab. 2018;103(2):640–8. DOI: 10.1210/jc.2017-02140 33. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736. DOI: 10.1146/annurev.neuro.24.1.677 34. Uno H, Lohmiller L, Thieme C, et al. Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I Hippocampus Brain Res Dev Brain Res. 1990;53(2):157–67. DOI: 10.1016/0165-3806(90)90002-g 35. Mandyam CD, Crawford EF, Eisch AJ, et al. Stress experienced in utero reduces sexual dichotomies in neurogenesis, microenvironment, and cell death in the adult rat hippocampus. Dev Neurobiol. 2008;68(5):575–89. DOI: 10.1002/dneu.20600 36. Murmu MS, Salomon S, Biala Y, et al. Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur J Neurosci. 2006;24(5):1477–87. DOI: 10.1111/j.1460-9568.2006.05024.x 37. Teleanu RI, Niculescu AG, Roza E, et al. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int J Mol Sci. 2022;23(11):5954. DOI: 10.3390/ijms23115954 38. Yabut JM, Crane JD, Green AE, et al. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr Rev. 2019;40(4):1092–107. DOI: 10.1210/er.2018-00283 39. Velasquez JC, Goeden N, Bonnin A. Placental serotonin: implications for the developmental effects of SSRIs and maternal depression. Front Cell Neurosci. 2013;7:47. DOI: 10.3389/fncel.2013.00047 40. Bonnin A, Torii M, Wang L, et al. Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci. 2007;10(5):588–97. DOI: 10.1038/nn1896 41. Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17(8):524–32. DOI: 10.1038/nrn.2016.57 42. Holland N, Robbins TW, Rowe JB. The role of noradrenaline in cognition and cognitive disorders. Brain. 2021;144(8):2243–56. DOI: 10.1093/brain/awab111 43. Saboory E, Ghasemi M, Mehranfard N. Norepinephrine, neurodevelopment and behavior. Neurochem Int. 2020;135:104706. DOI: 10.1016/j.neuint.2020.104706 44. Happe HK, Coulter CL, Gerety ME, et al. Alpha-2 adrenergic receptor development in rat CNS: an autoradiographic study. Neuroscience. 2004;123(1):167–78. DOI: 10.1016/j.neuroscience.2003.09.004 45. Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behav Sci (Basel). 2022;12(8):262. DOI: 10.3390/bs12080262 46. Casello SM, Flores RJ, Yarur HE, et al. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits. 2022;16:796443. DOI: 10.3389/fncir.2022.796443 47. Russo AF. Overview of Neuropeptides: Awakening the Senses? Headache. 2017;57(Suppl 2):37–46. DOI: 10.1111/head.13084 48. Eiden LE. Neuropeptide-catecholamine interactions in stress. Adv Pharmacol. 2013;68:399–404. DOI: 10.1016/B978-0-12-411512-5.00018-X 49. Schneiderman N, Ironson G, Siegel SD. Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol. 2005;1:607–28. DOI: 10.1146/annurev.clinpsy.1.102803.144141 50. Dowell J, Elser BA, Schroeder RE, Stevens HE. Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett. 2019;709:134368. DOI: 10.1016/j.neulet.2019.134368 51. Bronson SL, Bale TL. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 2014;155(7):2635–46. DOI: 10.1210/en.2014-1040 52. Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572(Pt 1):25–30. DOI: 10.1113/jphysiol.2006.104968 53. Weaver JR, Holman TR, Imai Y, et al. Integration of pro-inflammatory cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet beta cell dysfunction. Mol Cell Endocrinol. 2012;358(1):88–95. DOI: 10.1016/j.mce.2012.03.004 54. Silverman MN, Sternberg EM. Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci. 2012;1261:55–63. DOI: 10.1111/j.1749-6632.2012.06633.x 55. Rudolph MD, Graham AM, Feczko E, et al. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat Neurosci. 2018;21(5):765–72. DOI: 10.1038/s41593-018-0128-y 56. Spann MN, Monk C, Scheinost D, Peterson BS. Maternal Immune Activation During the Third Trimester Is Associated with Neonatal Functional Connectivity of the Salience Network and Fetal to Toddler Behavior. J Neurosci. 2018;38(11):2877–86. DOI: 10.1523/JNEUROSCI.2272-17.2018 57. Kneeland RE, Fatemi SH. Viral infection, inflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:35–48. DOI: 10.1016/j.pnpbp.2012.02.001 58. Faa G, Manchia M, Pintus R, et al. Fetal programming of neuropsychiatric disorders. Birth Defects Res C Embryo Today. 2016;108(3):207–23. DOI: 10.1002/bdrc.21139 59. Al-Gubory KH. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod Biomed Online. 2014;29(1):17–31. DOI: 10.1016/j.rbmo.2014.03.002 60. Buss C, Entringer S, Moog NK, et al. Intergenerational Transmission of Maternal Childhood Maltreatment Exposure: Implications for Fetal Brain Development. J Am Acad Child Adolesc Psychiatry. 2017;56(5):373–82. DOI: 10.1016/j.jaac.2017.03.001 61. Adalsteinsson BT, Ferguson-Smith AC. Epigenetic control of the genome-lessons from genomic imprinting. Genes (Basel). 2014;5(3):635–55. DOI: 10.3390/genes5030635 62. Cao-Lei L, de Rooij SR, King S, et al. Prenatal stress and epigenetics. Neurosci Biobehav Rev. 2020;117:198–210. DOI: 10.1016/j.neubiorev.2017.05.016 63. Toboła-Wróbel K, Pietryga M, Dydowicz P, et al. Association of Oxidative Stress on Pregnancy. Oxid Med Cell Longev. 2020;2020:6398520. DOI: 10.1155/2020/6398520 64. Ryter SW, Kim HP, Hoetzel A, et al. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 2007;9(1):49–89. DOI: 10.1089/ars.2007.9.49 65. Nayernia Z, Colaianna M, Robledinos-Antón N, et al. Decreased neural precursor cell pool in NADPH oxidase 2-deficiency: From mouse brain to neural differentiation of patient derived iPSC. Redox Biol. 2017;13:82–93. DOI: 10.1016/j.redox.2017.04.026 66. Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol. 2002;3(12):1129–34. DOI: 10.1038/ni1202-1129 67. Madhyastha S, Sahu SS, Rao G. Resveratrol for prenatal-stress-induced oxidative damage in growing brain and its consequences on survival of neurons. J Basic Clin Physiol Pharmacol. 2014;25(1):63–72. DOI: 10.1515/jbcpp-2013-0011 68. Bittle J, Menezes EC, McCormick ML, et al. The Role of Redox Dysregulation in the Effects of Prenatal Stress on Embryonic Interneuron Migration. Cereb Cortex. 2019;29(12):5116–30. DOI: 10.1093/cercor/bhz052 69. Bernhardt LK, Bairy KL, Madhyastha S. Neuroprotective Role of N-acetylcysteine against Learning Deficits and Altered Brain Neurotransmitters in Rat Pups Subjected to Prenatal Stress. Brain Sci. 2018;8(7):120. DOI: 10.3390/brainsci8070120 70. Miller DJ, Fort PE. Heat Shock Proteins Regulatory Role in Neurodevelopment. Front Neurosci. 2018;12:821. DOI: 10.3389/fnins.2018.00821 71. Cohen E, Bieschke J, Perciavalle RM, et al. Opposing activities protect against age-onset proteotoxicity. Science. 2006;313(5793):1604–10. DOI: 10.1126/science.1124646 72. Lima-Ojeda JM, Rupprecht R, Baghai TC. “I Am I and My Bacterial Circumstances”: Linking Gut Microbiome, Neurodevelopment, and Depression. Front Psychiatry. 2017;8:153. DOI: 10.3389/fpsyt.2017.00153 73. Cenit MC, Sanz Y, Codoñer-Franch P. Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol. 2017;23(30):5486–98. DOI: 10.3748/wjg.v23.i30.5486 74. Hartman S, Sayler K, Belsky J. Prenatal stress enhances postnatal plasticity: The role of microbiota. Dev Psychobiol. 2019;61(5):729–38. DOI: 10.1002/dev.21816 75. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5. DOI: 10.1073/pnas.1002601107 76. Walker RW, Clemente JC, Peter I, Loos RJF. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr Obes. 2017;12(Suppl 1):3–17. DOI: 10.1111/ijpo.12217 77. Jašarević E, Howerton CL, Howard CD, Bale TL. Alterations in the Vaginal Microbiome by Maternal Stress Are Associated With Metabolic Reprogramming of the Offspring Gut and Brain. Endocrinology. 2015;156(9):3265–76. DOI: 10.1210/en.2015-1177 78. Di Martino A, Fair DA, Kelly C, et al. Unraveling the miswired connectome: a developmental perspective. Neuron. 2014;83(6):1335–53. DOI: 10.1016/j.neuron.2014.08.050 79. Scheinost D, Sinha R, Cross SN, et al. Does prenatal stress alter the developing connectome? Pediatr Res. 2017;81(1–2):214–26. DOI: 10.1038/pr.2016.197 80. Bock J, Wainstock T, Braun K, Segal M. Stress in Utero: Prenatal Programming of Brain Plasticity and Cognition. Biol Psychiatry. 2015;78(5):315–26. DOI: 10.1016/j.biopsych.2015.02.036 81. Adamson B, Letourneau N, Lebel C. Prenatal maternal anxiety and children's brain structure and function: A systematic review of neuroimaging studies. J Affect Disord. 2018;241:117–26. DOI: 10.1016/j.jad.2018.08.029 82. El Marroun H, Tiemeier H, Muetzel RL, et al. Prenatal exposure to maternal and paternal depressive symptoms and brain morphology: a population-based prospective neuroimaging study in young children. Depress Anxiety. 2016;33(7):658–66. DOI: 10.1002/da.22524 83. Buss C, Davis EP, Muftuler LT, et al. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinology. 2010;35(1):141–53. DOI: 10.1016/j.psyneuen.2009.07.010 84. Rifkin-Graboi A, Meaney MJ, Chen H, et al. Antenatal maternal anxiety predicts variations in neural structures implicated in anxiety disorders in newborns. J Am Acad Child Adolesc Psychiatry. 2015;54(4):313–21. DOI: 10.1016/j.jaac.2015.01.013 85. Moog NK, Nolvi S, Kleih TS, et al. Prospective association of maternal psychosocial stress in pregnancy with newborn hippocampal volume and implications for infant social-emotional development. Neurobiol Stress. 2021;15:100368. DOI: 10.1016/j.ynstr.2021.100368 86. Qiu A, Rifkin-Graboi A, Chen H, et al. Maternal anxiety and infants' hippocampal development: timing matters. Transl Psychiatry. 2013;3(9):e306. DOI: 10.1038/tp.2013.79 87. Belnoue L, Grosjean N, Ladevèze E, et al. Prenatal stress inhibits hippocampal neurogenesis but spares olfactory bulb neurogenesis. PLoS One. 2013;8(8):e372972. DOI: 10.1371/journal.pone.0072972 88. Lemaire V, Lamarque S, Le Moal M, et al. Postnatal stimulation of the pups counteracts prenatal stress-induced deficits in hippocampal neurogenesis. Biol Psychiatry. 2006;59(9):786–92. DOI: 10.1016/j.biopsych.2005.11.009 89. Yang J, Han H, Cao J, et al. Prenatal stress modifies hippocampal synaptic plasticity and spatial learning in young rat offspring. Hippocampus. 2006;16(5):431–6. DOI: 10.1002/hipo.20181 90. Acosta H, Tuulari JJ, Scheinin NM, et al. Maternal Pregnancy-Related Anxiety Is Associated With Sexually Dimorphic Alterations in Amygdala Volume in 4-Year-Old Children. Front Behav Neurosci. 2019;13:175. DOI: 10.3389/fnbeh.2019.00175 91. Wen DJ, Poh JS, Ni SN, et al. Influences of prenatal and postnatal maternal depression on amygdala volume and microstructure in young children. Transl Psychiatry. 2017;7(4):e1103. DOI: 10.1038/tp.2017.74 92. Qiu A, Anh TT, Li Y, et al. Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Transl Psychiatry. 2015;5(2):e508. DOI: 10.1038/tp.2015.3 93. Posner J, Cha J, Roy AK, et al. Alterations in amygdala-prefrontal circuits in infants exposed to prenatal maternal depression. Transl Psychiatry. 2016;6(11):e935. DOI: 10.1038/tp.2016.146 94. Soe NN, Wen DJ, Poh JS, et al. Perinatal maternal depressive symptoms alter amygdala functional connectivity in girls. Hum Brain Mapp. 2018;39(2):680–90. DOI: 10.1002/hbm.23873

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM