Genetic basis of aggression: a study of polymorphisms of aggression markers and their consequences

Full Text:   Subscribers Only

Suggested citation:

Shepeleva II, Tarkovskaya KSh, Zobkova NV, et al. [Genetic basis of aggression: a study of polymorphisms of aggression markers and their consequences]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2024;(6):58-67. Russian

Abstract

In this scientific review, more than 500 papers were analyzed to study the genetic basis of aggression, including reviews of clinical and experimental studies, meta-analyses, and original articles contained in the PubMed and Scopus bibliographic databases. Based on the results of studies conducted on pairs of twins and adopted children, it was shown that aggressive behavior depends approximately equally on both hereditary characteristics and environmental factors. This review considers works aimed at identifying candidate genes and their genetic variations associated with manifestations of aggressive behavior. The most likely candidates for this role are functional polymorphisms of genes related to neurotransmitter systems, in particular, serotonin, catecholamine, and vasopressin.

Keywords aggression; aggressive behavior; genetic polymorphisms; serotonin; dopamine; vasopressin

References

1. Moyer KE. Kinds of aggression and their physiological basis. Comm Behav Biol. 1968;2:65–87. 2. Popova NK, Nikulina EM, Kulikov AV. Genetic analysis of different kinds of aggression behavior. Behav Genet. 1993;23(5):491–7. DOI: 10.1007/BF01067985 3. Craig IW, Halton KE. Genetics of human aggressive behaviour. Hum Genet. 2009;126(1):101–13. DOI: 10.1007/s00439-009-0695-9 4. Tulogdi A, Toth M, Halasz J, et al. Brain mechanisms involved in predatory aggression are activated in a laboratory model of violent intra-specific aggression. Eur J Neurosci. 2010;32(10):1744–53. DOI: 10.1111/j.1460-9568.2010.07429.x 5. Tulogdi A, Biro L, Barsvari B, et al. Neural mechanisms of predatory aggression in rats – implications for abnormal intra-specific aggression. Behav Brain Res. 2015;283:108–15. DOI: 10.1016/jbbr.2015.01.030 6. Wrangham RW. Two types of aggression in human evolution. Proc Natl Acad Sci U S A. 2018;115(2):245–53. DOI: 10.1073/pnas.1713611115 7. Nelson RJ, Trainor BC. Neural mechanisms of aggression. Nat Rev Neurosci. 2007;8(7):536–46. DOI: 10.1038/nrn2174 8. Siever LJ. Neurobiology of aggression and violence. Am J Psychiatry. 2008;165(4):429–42. DOI: 10.1176/appi.ajp.2008.07111774 9. Rosell DR, Siever LJ. The neurobiology of aggression and violence. CNS Spectr. 2015;20(3):254–79. DOI: 10.1017/S109285291500019X 10. World report on violence and health. World Health Organization (WHO). 2002. URL: https://www.who.int/publications/i/item/9241545615 (accessed on: 20.10.2024). 11. Popova NK. From genes to aggressive behavior: the role of serotonergic system. Bioessays. 2006;28(5):495–503. DOI: 10.1002/bies.20412 12. Maynard SJ, Harper DGC, Brookfield JFY. The evolution of aggression: can selection generate variability? [and discussion]. Philos Trans R Soc Lond B Biol Sci. 1988;319:557–70. 13. Bortolato M, Pivac N, Seler DM, et al. The role of serotonergic system at the interface of aggression and suicide. Neurosci. 2013;236:160–85. DOI: 10.1016/j.neuroscience.2013.01.015 14. Miles DR, Carey G. Genetic and environmental architecture of human aggression. J Pers Soc Psychol. 1997;72(1):207–17. DOI: 10.1037//0022-3514.72.1.207 15. Ferguson CJ. Genetic contributions to antisocial personality and behavior: a meta-analytic review from an evolutionary perspective. J Soc Psychol. 2010;150(2):160–80. DOI: 10.1080/00224540903366503 16. Veroude K, Zhang-James Y, Fernàndez-Castillo N, et al. Genetics of aggressive behavior: An overview. Am J Med Genet B Neuropsychiatr Genet. 2016;171B(1):3–43. DOI: 10.1002/ajmg.b.32364 17. Coccaro EF, Bergeman CS, Kavoussi RJ, Seroczynski AD. Heritability of aggression and irritability: a twin study of the Buss-Durkee aggression scales in adult male subjects. Biol Psychiatry. 1997;41(3):273–84. DOI: 10.1016/s0006-3223(96)00257-0 18. Seroczynski AD, Bergeman CS, Coccaro EF. Etiology of the impulsivity/aggression relationship: genes or environment? Psychiatry Res. 1999;86(1):41–57. DOI: 10.1016/s0165-1781(99)00013-x 19. Johansson A, Santtila P, Corander J, et al. Genetic effects on anger control and their interaction with alcohol intoxication: a self-report study. Biol Psychol. 2010;85(2):291–8. DOI: 10.1016/j.biopsycho.2010.07.016 20. Pavlov KA, Chistiakov DA, Chekhonin VP. Genetic determinants of aggression and impulsivity in humans. J Appl Genet. 2012;53(1):61–82. DOI: 10.1007/s13353-011-0069-6 21. Vassos E, Collier DA, Fazel S. Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Mol Psychiatry. 2014;19(4):471–7. DOI: 10.1038/mp.2013.31 22. Pompili E, Carlone C, Silvestrini C, Nicolò G. Focus on aggressive behaviour in mental illness. Riv Psichiatr. 2017;52(5):175–9. DOI: 10.1708/2801.28344 23. Yanowitch R, Coccaro EF. The neurochemistry of human aggression. Adv Genet. 2011;75:151–69. DOI: 10.1016/B978-0-12-380858-5.00005-8 24. Kudryavtseva NN. Positive fighting experience addiction-like state, and relapse: retrospective analysis of experimental studies. Aggress Violent Behav. 2020;52:101403. DOI: 10.1016/j.avb.2020.101403 25. Popova NK, Tsybko AS, Naumenko VS. The Implication of 5-HT Receptor Family Members in Aggression, Depression and Suicide: Similarity and Difference. Int J Mol Sci. 2022;23(15):8814. DOI: 10.3390/ijms23158814 26. Shepeleva II, Kardashova KSh, Shport SV, et al. Cerotoninergicheskaya sistema mozga i agressiya: Obzor. Voprosy okhrany psikhicheskogo zdorov'ya. 2024;2(1):40–5. (In Russ.) 27. New AS, Hazlett EA, Buchsbaum MS, et al. Blunted prefrontal cortical 18fluorodeoxyglucose positron emission tomography response to meta-chlorophenylpiperazine in impulsive aggression. Arch Gen Psychiatry. 2002;59(7):621–9. DOI: 10.1001/archpsyc.59.7.621 28. Seo D, Patrick CJ, Kennealy PJ. Role of Serotonin and Dopamine System Interactions in the Neurobiology of Impulsive Aggression and its Comorbidity with other Clinical Disorders. Aggress Violent Behav. 2008;13(5):383–95. DOI: 10.1016/j.avb.2008.06.003 29. Popova NK. From gene to aggressive behavior: the role of brain serotonin. Neurosci Behav Physiol. 2008;38(5):471–5. DOI: 10.1007/s11055-008-9004-7 30. Toshchakova VA, Bakhtiari Y, Kulikov AV, et al. Association of Polymorphisms of Serotonin Transporter (5HTTLPR) and 5-HT2C Receptor Genes with Criminal Behavior in Russian Criminal Offenders. Neuropsychobiology. 2017;75(4):200–10. DOI: 10.1159/000487484 31. Antypa N, Serretti A, Rujescu D. Serotonergic genes and suicide: a systematic review. Eur Neuropsychopharmacol. 2013;23(10):1125–42. DOI: 10.1016/j.euroneuro.2013.03.013 32. Malick JB, Barnett A. The role of serotonergic pathways in isolation-induced aggression in mice. Pharmacol Biochem Behav. 1976;5(1):55–61. DOI: 10.1016/0091-3057(76)90288-4 33. Xiang C, Liu S, Fan Y, et al. Single nucleotide polymorphisms, variable number tandem repeats and allele influence on serotonergic enzyme modulators for aggressive and suicidal behaviors: A review. Pharmacol Biochem Behav. 2019;180:74–82. DOI: 10.1016/j.pbb.2019.03.008 34. Bjork JM, Dougherty DM, Moeller FG, Swann AC. Differential behavioral effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology. 2000;22(4):357–69. DOI: 10.1016/S0893-133X(99)00136-0 35. Zhang X, Beaulieu JM, Sotnikova TD, et al. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science. 2004;305(5681):217. DOI: 10.1126/science.1097540 36. Kulikov AV, Osipova DV, Naumenko VS, Popova NK. Association between Tph2 gene polymorphism, brain tryptophan hydroxylase activity and aggressiveness in mouse strains. Genes Brain Behav. 2005;4(8):482–5. DOI: 10.1111/j.1601-183X.2005.00145.x 37. Osipova DV, Kulikov AV, Popova NK. C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test. J Neurosci Res. 2009;87(5):1168–74. DOI: 10.1002/jnr.21928 38. Chen GL, Vallender EJ, Miller GM. Functional characterization of the human TPH2 5' regulatory region: untranslated region and polymorphisms modulate gene expression in vitro. Hum Genet. 2008;122(6):645–57. DOI: 10.1007/s00439-007-0443-y 39. Holmes A, Murphy DL, Crawley JN. Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl). 2002;161(2):160–7. DOI: 10.1007/s00213-002-1024-3 40. Heils A, Teufel A, Petri S, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem. 1996;66(6):2621–4. DOI: 10.1046/j.1471-4159.1996.66062621.x 41. Canli T, Lesch KP. Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci. 2007;10(9):1103–9. DOI: 10.1038/nn1964 42. Ficks CA, Waldman ID. Candidate genes for aggression and antisocial behavior: a meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR. Behav Genet. 2014;44(5):427–44. DOI: 10.1007/s10519-014-9661-y 43. Barzman D, Geise C, Lin PI. Review of the genetic basis of emotion dysregulation in children and adolescents. World J Psychiatry. 2015;5(1):112–7. DOI: 10.5498/wjp.v5.i1.112 44. Aluja A, Garcia LF, Blanch A, et al. Impulsive-disinhibited personality and serotonin transporter gene polymorphisms: association study in an inmate's sample. J Psychiatr Res. 2009;43(10):906–14. DOI: 10.1016/j.jpsychires.2008.11.008 45. Brunner HG, Nelen M, Breakefield XO, et al. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993;262(5133):578–80. DOI: 10.1126/science.8211186 46. Sabol SZ, Hu S, Hamer D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet. 1998;103(3):273–9. DOI: 10.1007/s004390050816 47. Craig IW. Genetic polymorphisms in stress response. In: Encyclopedia of stress, 2nd ed. G Fink, editor. Oxford: Elsevier; 2007. р. 135–40. 48. D'Souza UM, Craig IW. Functional genetic polymorphisms in serotonin and dopamine gene systems and their significance in behavioural disorders. Prog Brain Res. 2008;172:73–98. DOI: 10.1016/S0079-6123(08)00904-7 49. Mentis AA, Dardiotis E, Katsouni E, Chrousos GP. From warrior genes to translational solutions: novel insights into monoamine oxidases (MAOs) and aggression. Transl Psychiatry. 2021;11(1):130. DOI: 10.1038/s41398-021-01257-2 50. Balciuniene J, Emilsson L, Oreland L, et al. Investigation of the functional effect of monoamine oxidase polymorphisms in human brain. Hum Genet. 2002;110(1):1–7. DOI: 10.1007/s00439-001-0652-8 51. Kolla NJ, Vinette SA. Monoamine Oxidase A in Antisocial Personality Disorder and Borderline Personality Disorder. Curr Behav Neurosci Rep. 2017;4(1):41–8. DOI: 10.1007/s40473-017-0102-0 52. da Cunha-Bang S, Knudsen GM. The Modulatory Role of Serotonin on Human Impulsive Aggression. Biol Psychiatry. 2021;90(7):447–57. DOI: 10.1016/j.biopsych.2021.05.016 53. McSwiggan S, Elger B, Appelbaum PS. The forensic use of behavioral genetics in criminal proceedings: Case of the MAOA-L genotype. Int J Law Psychiatry. 2017;50:17–23. DOI: 10.1016/j.ijlp.2016.09.005 54. Benko A, Lazary J, Molnar E, et al. Significant association between the C(-1019)G functional polymorphism of the HTR1A gene and impulsivity. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(2):592–9. DOI: 10.1002/ajmg.b.31025 55. Banlaki Z, Elek Z, Nanasi T, et al. Polymorphism in the serotonin receptor 2a (HTR2A) gene as possible predisposal factor for aggressive traits. PLoS One. 2015;10(2):e0117792. DOI: 10.1371/journal.pone.0117792 56. Lappalainen J, Zhang L, Dean M, et al. Identification, expression, and pharmacology of a Cys23-Ser23 substitution in the human 5-HT2c receptor gene (HTR2C). Genomics. 1995;27(2):274–9. DOI: 10.1006/geno.1995.1042 57. Nemoda Z, Lyons-Ruth K, Szekely A, et al. Association between dopaminergic polymorphisms and borderline personality traits among at-risk young adults and psychiatric inpatients. Behav Brain Funct. 2010;6:4. DOI: 10.1186/1744-9081-6-4 58. Grigorenko EL, De Young CG, Eastman M, et al. Aggressive behavior, related conduct problems, and variation in genes affecting dopamine turnover. Aggress Behav. 2010;36(3):158–76. DOI: 10.1002/ab.20339 59. Kant T, Koyama E, Zai CC, et al. COMT Val/Met and Psychopathic Traits in Children and Adolescents: A Systematic Review and New Evidence of a Developmental Trajectory toward Psychopathy. Int J Mol Sci. 2022;23(3):1782. DOI: 10.3390/ijms23031782 60. Kant T, Koyama E, Zai CC, et al. COMT Val/Met, stressful life events and externalizing behaviors in youth: A longitudinal study from the ABCD sample. Heliyon. 2023;9(11):e21126. DOI: 10.1016/j.heliyon.2023.e21126 61. Volavka J, Bilder R, Nolan K. Catecholamines and aggression: the role of COMT and MAO polymorphisms. Ann N Y Acad Sci. 2004;1036:393–8. DOI: 10.1196/annals.1330.023 62. Schluter T, Winz O, Henken K, et al. The impact of dopamine on aggression: an [18F]-FDOPA PET study in healthy males. J Neurochem. 2013;33(43):16889–96. DOI: 10.1523/JNEUROSCI.1398-13.2013 63. Gogos JA, Morgan M, Luine V, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A. 1998;95(17):9991–6. DOI: 10.1073/pnas.95.17.9991 64. Qayyum A, Zai CC, Hirata Y, et al. The Role of the Catechol-o-Methyltransferase (COMT) GeneVal158Met in Aggressive Behavior, a Review of Genetic Studies. Curr Neuropharmacol. 2015;13(6):802–14. DOI: 10.2174/1570159x13666150612225836 65. Bhattacharjee D, Guðjónsdóttir AR, Chova PE, et al. Behavioral, physiological, and genetic drivers of coping in a non-human primate. iScience. 2024;27(2):108890. DOI: 10.1016/j.isci.2024.108890 66. Kulikova MA, Maluchenko NV, Timofeeva MA, et al. Effect of functional catechol-O-methyltransferase Val158Met polymorphism on physical aggression. Bull Exp Biol Med. 2008;145(1):62–4. DOI: 10.1007/s10517-008-0006-9 67. Weidler C, Hofhansel L, Regenbogen C, et al. The influence of the COMT Val158Met polymorphism on prefrontal TDCS effects on aggression. Sci Rep. 2024;14(1):3437. DOI: 10.1038/s41598-024-53930-3 68. Zai CC, Muir KE, Nowrouzi B, et al. Possible genetic association between vasopressin receptor 1B and child aggression. Psychiatry Res. 2012;200(2–3):784–8. DOI: 10.1016/j.psychres.2012.07.031 69. Vogel F, Wagner S, Başkaya O, et al. Variable number of tandem repeat polymorphisms of the arginine vasopressin receptor 1A gene and impulsive aggression in patients with borderline personality disorder. Psychiatr Genet. 2012;22(2):105–6. DOI: 10.1097/YPG.0b013e32834accad 70. Coccaro EF, Kavoussi RJ, Hauger RL, et al. Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Arch Gen Psychiatry. 1998;55(8):708–14. DOI: 10.1001/archpsyc.55.8.708 71. Luppino D, Moul C, Hawes DJ, et al. Association between a polymorphism of the vasopressin 1B receptor gene and aggression in children. Psychiatr Genet. 2014;24(5):185–90. DOI: 10.1097/YPG.0000000000000036 72. Davydova YuD, Litvinov SS, Enikeeva RF, et al. Sovremennye predstavleniya o genetik agressivnogo povedeniya. Vavilovskii zhurnal genetiki i selektsii. 2018;22(6):716–25. (In Russ.) DOI: 10.18699/VJ18.415 73. Dragovich AYu, Borinskaya SA. Geneticheskaya i genomnaya osnova agressivnogo povedeniya cheloveka. Genetika. 2019;55(12):1381–96. (In Russ.) DOI: 10.113/s0016675819090054

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM