EEG-derived biomarkers of military posttraumatic stress disorder: resting state and auditory P50 sensory gating
Full Text:
Subscribers Only
|
Suggested citation:
Telesheva KYu, Zakurazhnaya VI, Morozova IO, et al. [EEG-derived biomarkers of military posttraumatic stress disorder: resting state and auditory P50 sensory gating]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2024;(6):44-57. Russian
The research involved 42 veterans with PTSD against a control group of 46 men without PTSD or traumatic events in their history and with no experience of combat. EEG recording included eyes-closed resting state, and suppression of the P50 potential. We examined the EEG power spectrum, the alpha asymmetry, the amplitude and latency of the P50 potential, and the sensory gating. The results show higher theta (5–7 Hz), beta-1 (14–20 Hz) and beta-2 (21–32 Hz) in PTSD. No significant differences in alpha asymmetry were found. A lower amplitude in the first stimulus of the P50 was identified. However, no significant differences in the suppression of the P50 potential were found.
Keywords EEG; power spectrum; frontal alpha-asymmetry; sensory gating; combatants; posttraumatic stress
1. Woo CW, Chang LJ, Lindquist MA, et al. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365–77. DOI: 10.1038/nn.4478 2. Fingelkurts AA, Fingelkurts AA. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. Biol Psychiatry. 2015;77(12):1050–60. DOI: 10.1016/j.biopsych.2014.12.011 3. Lee SH, Yoon S, Kim JI, et al. Functional connectivity of resting state EEG and symptom severity in patients with post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014;51:51–7. DOI: 10.1016/j.pnpbp.2014.01.008 4. Begić D, Hotujac L, Jokić-Begić N. Electroencephalographic comparison of veterans with combat-related post-traumatic stress disorder and healthy subjects. Int J Psychophysiol. 2001;40(2):167–72. DOI: 10.1016/s0167-8760(00)00153-7 5. Moon SY, Choi YB, Jung HK, et al. Increased Frontal Gamma and Posterior Delta Powers as Potential Neurophysiological Correlates Differentiating Posttraumatic Stress Disorder from Anxiety Disorders. Psychiatry Investig. 2018;15(11):1087–93. DOI: 10.30773/pi.2018.09.30 6. Rabe S, Beauducel A, Zöllner T, et al. Regional brain electrical activity in posttraumatic stress disorder after motor vehicle accident. J Abnorm Psychol. 2006;115(4):687–98. DOI: 10.1037/0021-843X.115.4.687 7. Park SM, Lee JY, Choi JS, et al. A prospective study on EEG default mode network associated with subsequent posttraumatic stress disorder following sexual assault. J Psychiatr Res. 2024;174:181–91. DOI: 10.1016/j.jpsychires.2024.04.009 8. Franke LM, Walker WC, Hoke KW, et al. Distinction in EEG slow oscillations between chronic mild traumatic brain injury and PTSD. Int J Psychophysiol. 2016;106:21–9. DOI: 10.1016/j.ijpsycho.2016.05.010 9. Todder D, Levine J, Abujumah A, et al. The quantitative electroencephalogram and the low-resolution electrical tomographic analysis in posttraumatic stress disorder. Clin EEG Neurosci. 2012;43(1):48–53. DOI: 10.1177/1550059411428716 10. Sheerin CM, Franke LM, Aggen SH, et al. Evaluating the Contribution of EEG Power Profiles to Characterize and Discriminate Posttraumatic Stress Symptom Factors in a Combat-Exposed Population. Clin EEG Neurosci. 2018;49(6):379–87. DOI: 10.1177/1550059418767583 11. Veltmeyer MD, McFarlane AC, Bryant RA, et al. Integrative assessment of brain function in PTSD: brain stability and working memory. J Integr Neurosci. 2006;5(1):123–38. DOI: 10.1142/s0219635206001057 12. Kemp AH, Griffiths K, Felmingham KL, et al. Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder. Biol Psychol. 2010;85(2):350–4. DOI: 10.1016/j.biopsycho.2010.08.001 13. Wahbeh H, Oken BS. Peak high-frequency HRV and peak alpha frequency higher in PTSD. Appl Psychophysiol Biofeedback. 2013;38(1):57–69. DOI: 10.1007/s10484-012-9208-z 14. Imperatori C, Farina B, Quintiliani MI, et al. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study. Biol Psychol. 2014;102:10–7. DOI: 10.1016/j.biopsycho.2014.07.011 15. Moon SY, Choi YB, Jung HK, et al. Increased Frontal Gamma and Posterior Delta Powers as Potential Neurophysiological Correlates Differentiating Posttraumatic Stress Disorder from Anxiety Disorders. Psychiatry Investig. 2018;15(11):1087–93. DOI: 10.30773/pi.2018.09.30 16. Shim M, Im CH, Lee SH. Disrupted cortical brain network in post-traumatic stress disorder patients: a resting-state electroencephalographic study. Transl Psychiatry. 2017;7(9):e1231. DOI: 10.1038/tp.2017.200 17. Shim M, Hwang HJ, Lee SH. Impaired functional cortical networks in the theta frequency band of patients with post-traumatic stress disorder during auditory-cognitive processing. Front Psychiatry. 2022;13:811766. DOI: 10.3389/fpsyt.2022.811766 18. Metzger LJ, Paige SR, Carson MA, et al. PTSD arousal and depression symptoms associated with increased right-sided parietal EEG asymmetry. J Abnorm Psychol. 2004;113(2):324–9. DOI: 10.1037/0021-843X.113.2.324 19. Wahbeh H, Oken BS. Peak high-frequency HRV and peak alpha frequency higher in PTSD. Appl Psychophysiol Biofeedback. 2013;38(1):57–69. DOI: 10.1007/s10484-012-9208-z 20. Horato N, Quagliato LA, Nardi AE. The relationship between emotional regulation and hemispheric lateralization in depression: a systematic review and a meta-analysis. Transl Psychiatry. 2022;12(1):162. DOI: 10.1038/s41398-022-01927-9 21. Glier S, Campbell A, Corr R, et al. Individual differences in frontal alpha asymmetry moderate the relationship between acute stress responsivity and state and trait anxiety in adolescents. Biol Psychol. 2022;172:108357. DOI: 10.1016/j.biopsycho.2022.108357 22. Meyer T, Quaedflieg CWEM, Weijland K, et al. Frontal EEG asymmetry during symptom provocation predicts subjective responses to intrusions in survivors with and without PTSD. Psychophysiology. 2018;55(1):e12779. DOI: 10.1111/psyp.12779 23. Kemp AH, Griffiths K, Felmingham KL, et al. Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and posttraumatic stress disorder. Biol Psychol. 2010;85(2):350–4. DOI: 10.1016/j.biopsycho.2010.08.001 24. Newson JJ, Thiagarajan TC. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front Hum Neurosci. 2019;12:521. DOI: 10.3389/fnhum.2018.00521 25. Butt M, Espinal E, Aupperle RL, et al. The Electrical Aftermath: Brain Signals of Posttraumatic Stress Disorder Filtered Through a Clinical Lens. Front Psychiatry. 2019;10:368. DOI: 10.3389/fpsyt.2019.00368 26. Gordon E, Palmer DM, Cooper N. EEG alpha asymmetry in schizophrenia, depression, PTSD, panic disorder, ADHD and conduct disorder. Clin EEG Neurosci. 2010;41(4):178–83. DOI: 10.1177/155005941004100404 27. Meyer T, Smeets T, Giesbrecht T, et al. The role of frontal EEG asymmetry in post-traumatic stress disorder. Biol Psychol. 2015;108:62–77. DOI: 10.1016/j.biopsycho.2015.03.018 28. Haegens S, Cousijn H, Wallis G, et al. Inter- and intra-individual variability in alpha peak frequency. Neuroimage. 2014;92(100):46–55. DOI: 10.1016/j.neuroimage.2014.01.049 29. Zhang Y, Wu W, Toll RT, et al. Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography. Nat Biomed Eng. 2021;5(4):309–23. DOI: 10.1038/s41551-020-00614-8 30. Lobo I, Portugal LC, Figueira I, et al. EEG correlates of the severity of posttraumatic stress symptoms: A systematic review of the dimensional PTSD literature. J Affect Disord. 2015;183:210–20. DOI: 10.1016/j.jad.2015.05.015 31. Freedman R, Adler LE, Myles-Worsley M, et al. Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation, and an animal model. Arch Gen Psychiatry. 1996;53(12):1114–21. DOI: 10.1001/archpsyc.1996.01830120052009 32. Song W, Hu X, Xie G, et al. The Auditory P50 Gating in Mild Cognitive Impairment: A Case-Control Study. Am J Alzheimers Dis Other Demen. 2022;37:15333175211068966. DOI: 10.1177/15333175211068966 33. Ghisolfi ES, Margis R, Becker J, et al. Impaired P50 sensory gating in post-traumatic stress disorder secondary to urban violence. Int J Psychophysiol. 2004;51(3):209–14. DOI: 10.1016/j.ijpsycho.2003.09.002 34. Freedman R, Olsen-Dufour AM, Olincy A. Consortium on the Genetics of Schizophrenia. P50 inhibitory sensory gating in schizophrenia: analysis of recent studies. Schizophr Res. 2020;218:93–8. DOI: 10.1016/j.schres.2020.02.003 35. Schulze KK, Hall MH, McDonald C, et al. P50 auditory evoked potential suppression in bipolar disorder patients with psychotic features and their unaffected relatives. Biol Psychiatry. 2007;62(2):121–8. DOI: 10.1016/j.biopsych.2006.08.006 36. Gjini K, Boutros NN, Haddad L, et al. Evoked potential correlates of post-traumatic stress disorder in refugees with history of exposure to torture. J Psychiatr Res. 2013;47(10):1492–8. DOI: 10.1016/j.jpsychires.2013.06.007 37. Holstein DH, Vollenweider FX, Jäncke L, et al. P50 suppression, prepulse inhibition, and startle reactivity in the same patient cohort suffering from posttraumatic stress disorder. J Affect Disord. 2010;126(1–2):188–97. DOI: 10.1016/j.jad.2010.02.122 38. Meteran H, Vindbjerg E, Uldall SW, et al. Startle habituation, sensory, and sensorimotor gating in trauma-affected refugees with posttraumatic stress disorder. Psychol Med. 2019;49(4):581–9. DOI: 10.1017/S003329171800123X 39. Telesheva K, Savenkova V, Morozova I, et al. Potential Neurophysiological Markers of Combat-Related Post-Traumatic Stress Disorder: A Cross-Sectional Diagnostic Study. Consort Psychiatr. 2024;5(2):31–44. DOI: 10.17816/CP15512 40. Chang WP, Gavin WJ, Davies PL. Bandpass filter settings differentially affect measurement of P50 sensory gating in children and adults. Clin Neurophysiol. 2012;123(11):2264–72. DOI: 10.1016/j.clinph.2012.03.019 41. Olincy A, Braff DL, Adler LE, et al. Inhibition of the P50 cerebral evoked response to repeated auditory stimuli: results from the Consortium on Genetics of Schizophrenia. Schizophr Res. 2010;119(1–3):175–82. DOI: 10.1016/j.schres.2010.03.004 42. Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev. 2007;31(3):377–95. DOI: 10.1016/j.neubiorev.2006.10.004 43. Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci. 2011;1225:72–82. DOI: 10.1111/j.1749-6632.2011.05990.x 44. Allegretta RA, Rovelli K, Balconi M. The Role of Emotion Regulation and Awareness in Psychosocial Stress: An EEG-Psychometric Correlational Study. Healthcare (Basel). 2024;12(15):1491. DOI: 10.3390/healthcare12151491 45. Arns M, Etkin A, Hegerl U, et al. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome? Eur Neuropsychopharmacol. 2015;25(8):1190–200. DOI: 10.1016/j.euroneuro.2015.03.007 46. Haegens S, Händel BF, Jensen O. Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. J Neurosci. 2011;31(14):5197–204. DOI: 10.1523/JNEUROSCI.5199-10.2011 47. Campbell J, Ehlert U. Acute psychosocial stress: does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology. 2012;37(8):1111–34. DOI: 10.1016/j.psyneuen.2011.12.010 48. Sauseng P, Hoppe J, Klimesch W, et al. Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur J Neurosci. 2007;25(2):587–93. DOI: 10.1111/j.1460-9568.2006.05286.x 49. Liao YC, Guo NW, Su BY, et al. Frontal Beta Activity in the Meta-Intention of Children With Attention Deficit Hyperactivity Disorder. Clin EEG Neurosci. 2021;52(2):136–43. DOI: 10.1177/1550059420933142 50. López-Castro T, Martin L, Nickley S, et al. Frontal Alpha Asymmetry in Posttraumatic Stress Disorder: Group Differences Among Individuals With and Without PTSD During an Inhibitory Control Task. Clin EEG Neurosci. 2023;54(5):472–82. DOI: 10.1177/15500594211046703 51. Harmon-Jones E, Abramson LY, Nusslock R, et al. Effect of bipolar disorder on left frontal cortical responses to goals differing in valence and task difficulty. Biol Psychiatry. 2008;63(7):693–8. DOI: 10.1016/j.biopsych.2007.08.004 52. Gordon E, Palmer DM, Cooper N. EEG alpha asymmetry in schizophrenia, depression, PTSD, panic disorder, ADHD and conduct disorder. Clin EEG Neurosci. 2010;41(4):178–83. DOI: 10.1177/155005941004100404 53. Ma Y, Peng H, Liu H, et al. Alpha frontal asymmetry underlies individual differences in reactivity to acute psychosocial stress in males. Psychophysiology. 2021;58(10):e13893. DOI: 10.1111/psyp.13893 54. Zhang X, Bachmann P, Schilling TM, et al. Emotional stress regulation: The role of relative frontal alpha asymmetry in shaping the stress response. Biol Psychol. 2018;138:231–9. DOI: 10.1016/j.biopsycho.2018.08.007 55. Jones LA, Hills PJ, Dick KM, et al. Cognitive mechanisms associated with auditory sensory gating. Brain Cogn. 2016;102:33–45. DOI: 10.1016/j.bandc.2015.12.005 56. de la Salle S, Bowers H, Birmingham M, et al. Auditory P50 Sensory Gating Alterations in Major Depressive Disorder and their Relationship to Clinical Symptoms. Psychiatry Res Neuroimaging. 2024;341:111813. DOI: 10.1016/j.pscychresns.2024.111813 57. Nguyen AT, Hetrick WP, O'Donnell BF, et al. Abnormal beta and gamma frequency neural oscillations mediate auditory sensory gating deficit in schizophrenia. J Psychiatr Res. 2020;124:13–21. DOI: 10.1016/j.jpsychires.2020.01.014 58. Hall MH, Taylor G, Salisbury DF, et al. Sensory gating event-related potentials and oscillations in schizophrenia patients and their unaffected relatives. Schizophr Bull. 2011;37(6):1187–99. DOI: 10.1093/schbul/sbq027 59. Blume WT. Drug effects on EEG. J Clin Neurophysiol. 2006;23(4):306–11. DOI: 10.1097/01.wnp.0000229137.94384.fa 60. Hazlett EA, Rothstein EG, Ferreira R, et al. Sensory gating disturbances in the spectrum: similarities and differences in schizotypal personality disorder and schizophrenia. Schizophr Res. 2015;161(2–3):283–90. DOI: 10.1016/j.schres.2014.11.020
Article Metrics
Metrics powered by PLOS ALM