The role of dendritic cells and microglia in pathogenesis and treatment of neurological and mental disorders in multiple sclerosis
Suggested citation:
Chernysheva AA, Chekhonin IV, Silant'ev AS, et al. [The role of dendritic cells and microglia in pathogenesis and treatment of neurological and mental disorders in multiple sclerosis]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2019;(5):31-39. Russian
This scientific review is devoted to the analysis of Russian and foreign publications dedicated to the role of immune system components in the development of neuropsychiatric disorders in multiple sclerosis. We pay particular attention to the link between the influence exerted by therapeutic agents on the mental functions of patients with multiple sclerosis and the effects of such therapeutic drugs on the functional activity of microglia and dendritic cells. Generalization and systematization of the current material can contribute to a better understanding of the mechanisms of formation and maintenance of pathological processes in multiple sclerosis, as well as be useful for the development of new drugs for the treatment of multiple sclerosis and correction of mental disorders related to multiple sclerosis.
Keywords dendritic cells; microglia; multiple sclerosis; drug therapy
1. Marrie RA, Fisk JD, Tremlett H, et al. Differences in the burden of psychiatric comorbidity in MS vs the general population. Neurology. 2015; 85(22): 1972–9. PMID: 26519542 DOI: 10.1212/WNL.0000000000002174 2. Kalb R, Feinstein A, Rohrig A, et al. Depression and Suicidality in Multiple Sclerosis: Red Flags, Management Strategies, and Ethical Considerations. Curr Neurol Neurosci Rep. 2019; 19(10): 77. PMID: 31463644 DOI: 10.1007/s11910-019-0992-1 3. Kalson-Ray S, Edan G, Leray E, et al. An excessive risk of suicide may no longer be a reality for multiple sclerosis patients. Mult Scler. 2017; 23(6): 864–71. PMID: 28299961 DOI: 10.1177/1352458517699873 4. Marrie RA. What is the risk of suicide in multiple sclerosis? Mult Scler. 2017; 23(6): 755–6. PMID: 28299962 DOI: 10.1177/1352458517699992 5. Poletti S, de Wit H, Mazza E, et al. Th17 cells correlate positively to the structural and functional integrity of the brain in bipolar depression and healthy controls. Brain Behav Immun. 2017; 61: 317–25. PMID: 28025071 DOI: 10.1016/j.bbi.2016.12.020 6. Collin M, McGovern N, Haniffa M. Human dendritic cell subsets. Immunology. 2013; 140(1): 22–30. PMID: 23621371 DOI: 10.1111/imm.12117 7. Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? Science. 2013; 339(6116):156–61. PMID: 23307732 DOI: 10.1126/science.1227901 8. D'Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, et al. Brain dendritic cells: biology and pathology. Acta Neuropathol. 2012; 124(5): 599–614. PMID: 22825593 DOI: 10.1007/s00401-012-1018-0 9. Strachan-Whaley M, Rivest S, Yong VW. Interactions between microglia and T cells in multiple sclerosis pathobiology. J Interferon Cytokine Res. 2014; 34(8): 615–22. PMID: 25084178 DOI: 10.1089/jir.2014.0019 10. Li H, Sagar AP, Kéri S. Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. J Affect Disord. 2018; 241: 305–10. PMID: 30142589 DOI: 10.1016/j.jad.2018.08.021 11. Sugimoto K, Kakeda S, Watanabe K, et al. Relationship between white matter integrity and serum inflammatory cytokine levels in drug-naive patients with major depressive disorder: diffusion tensor imaging study using tract-based spatial statistics. Transl Psychiatry. 2018; 8(1): 141. PMID: 30069019 DOI: 10.1038/s41398-018-0174-y 12. Hashioka S, Inoue K, Hayashida M, et al. Implications of Systemic Inflammation and Periodontitis for Major Depression. Front Neurosci. 2018; 12: 483. PMID: 30072865 DOI: 10.3389/fnins.2018.00483 13. Bergamini G, Mechtersheimer J, Azzinnari D, et al. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice. Neurobiol Stress. 2018; 8(2018): 42–56. PMID: 29888303 DOI: 10.1016/j.ynstr.2018.01.004 14. Mohammad MG, Tsai VWW, Ruitenberg MJ, et al. Immune cell trafficking from the brain maintains CNS immune tolerance. J Clin Invest. 2014; 124(3): 1228–41. PMID: 24569378 DOI: 10.1172/JCI71544 15. Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol. 2017; 17(1): 30–48. PMID: 27890914 DOI: 10.1038/nri.2016.116 16. van Zwam M, Huizinga R, Melief MJ, et al. Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med. 2009; 87(3): 273–86. PMID: 19050840 DOI: 10.1007/s00109-008-0421-4 17. Levin M, Douglas J, Meyers L, et al. Neurodegeneration in multiple sclerosis involves multiple pathogenic mechanisms. Degener Neurol Neuromuscul Dis. 2014; 2014(4): 49–63. DOI: 10.2147/DNND.S54391 18. Feinstein A, Roy P, Lobaugh N, et al. Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology. 2004; 62(4): 586–90. PMID: 14981175 DOI: 10.1212/01.wnl.0000110316.12086.0c 19. Rovaris M, Riccitelli G, Judica E, et al. Cognitive impairment and structural brain damage in benign multiple sclerosis. Neurology. 2008; 71(19): 1521–6. PMID: 18815387 DOI: 10.1212/01.wnl.0000319694.14251.95 20. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016; 16(1): 22–34. PMID: 26711676 DOI: 10.1038/nri.2015.5 21. Kallaur AP, Lopes J, Oliveira SR, et al. Immune-Inflammatory and Oxidative and Nitrosative Stress Biomarkers of Depression Symptoms in Subjects with Multiple Sclerosis: Increased Peripheral Inflammation but Less Acute Neuroinflammation. Mol Neurobiol. 2016; 53(8): 5191–202. PMID: 26399644 DOI: 10.1007/s12035-015-9443-4 22. Kim DY, Hao J, Liu R, et al. Inflammation-Mediated Memory Dysfunction and Effects of a Ketogenic Diet in a Murine Model of Multiple Sclerosis. PLoS ONE. 2012; 7(5): e35476 DOI: 10.1371/journal.pone.0035476 23. Park S-H, Kim MS, Lim HX, et al. IL-33-matured dendritic cells promote Th17 cell responses via IL-1β and IL-6. Cytokine. 2017; 99(2017): 106–13. DOI: 10.1016/j.cyto.2017.07.022 24. Zhou T, Wang S, Ren H, et al. Dendritic cell nuclear protein-1, a novel depression-related protein, upregulates corticotropin-releasing hormone expression. Brain. 2010; 133(10): 3069–79. DOI: 10.1093/brain/awq207 25. Li H, Wang YJ, Hua L, et al. Lack of association between dendritic cell nuclear protein-1 gene and major depressive disorder in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 45(2013): 7–10. PMID: 23619526 DOI: 10.1016/j.pnpbp.2013.04.012 26. Coquet JM, Ribot JC, Bąbała N, et al. Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27–CD70 pathway. J Exp Med. 2013; 210(4): 715–28. PMID: 23547099 DOI: 10.1084/jem.20112061 27. Herbin O, Bonito AJ, Jeong S, et al. Medullary Thymic Epithelial Cells and CD8α+ Dendritic Cells coordinately regulate central tolerance but CD8α+ cells are Dispensable for Thymic Regulatory T cell production. J Autoimmun. 2016; 75(2016): 141–9. PMID: 27543048 DOI: 10.1016/j.jaut.2016.08.002 28. Idoyaga J, Fiorese C, Zbytnuik L, et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Invest. 2013; 123(2): 844–54. DOI: 10.1172/JCI65260 29. Chen W, Liang X, Peterson AJ, et al. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol. 2008; 181(8): 5396–404. PMID: 18832696 30. Hong D, Huifen Z, Ping L, et al. Programmed Death-1 Signaling Is Essential for the Skin Allograft Protection by Alternatively Activated Dendritic Cell Infusion in Mice. Transplantation. 2009; 88(7): 864–73. DOI: 10.1097/TP.0b013e3181b6ea74 doi: 10.1097/TP.0b013e3181b6ea74 31. Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J of Exp Med. 2007; 204(8): 1757–64. DOI: 10.1084/jem.20070590 32. Li Y, Xiao B, Qiu W, et al. Altered expression of CD4(+) CD25(+) regulatory T cells and its 5-HT(1a) receptor in patients with major depression disorder. J Affect Disord. 2010; 124(1-2): 68–75. PMID: 19900711 DOI: 10.1016/j.jad.2009.10.018 33. Khosravi M, Majdinasab N, Amari A, et al. Increased frequency of CD4+CD25high CD127low/− regulatory T cells in patients with multiple sclerosis. Gene Reports. 2019; 17(2019): 100456. DOI: 10.1016/j.genrep.2019.100456 34. Zhang Y, Bi X, Adebiyi O, et al. Venlafaxine Improves the Cognitive Impairment and Depression-Like Behaviors in a Cuprizone Mouse Model by Alleviating Demyelination and Neuroinflammation in the Brain. Front Pharmacol. 2019; 10: 332. PMID: 31024304 DOI: 10.3389/fphar.2019.00332 35. Lee JS, Jung ID, Lee CM, et al. Venlafaxine inhibits the development and differentiation of dendritic cells through the regulation of p-glycoprotein. Int Immunopharmacol. 2011; 11(9): 1348–57. PMID: 21605706 DOI: 10.1016/j.intimp.2011.04.019 36. Zhang Y, Xu H, Jiang W, et al. Quetiapine alleviates the cuprizone-induced white matter pathology in the brain of C57BL/6 mouse. Schizophr Res. 2008; 106(2-3): 182–91. PMID: 18938062 DOI: 10.1016/j.schres.2008.09.013 37. Zhornitsky S, Wee Yong V, Koch MW, et al. Quetiapine fumarate for the treatment of multiple sclerosis: focus on myelin repair. CNS Neurosci Ther. 2013; 19(10): 737–44. PMID: 23870612 DOI: 10.1111/cns.12154 38. Faissner S, Mishra M, Kaushik DK, et al. Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic. Nat Commun. 2017; 8(1): 1990. PMID: 29259169 DOI: 10.1038/s41467-017-02119-6 39. Hu X, Zhou H, Zhang D, et al. Clozapine protects dopaminergic neurons from inflammation-induced damage by inhibiting microglial overactivation. J Neuroimmune Pharmacol. 2012; 7(1): 187–201. PMID: 21870076 DOI: 10.1007/s11481-011-9309-0 40. De Sarno P, Axtell RC, Raman C, et al. Lithium prevents and ameliorates experimental autoimmune encephalomyelitis. J Immunol. 2008; 181(1): 338–45. PMID: 18566399 DOI: 10.4049/jimmunol.181.1.338 41. Zhang X, Markovic-Plese S. Interferon beta inhibits the Th17 cell-mediated autoimmune response in patients with relapsing–remitting multiple sclerosis. Clin Neurol Neurosurg. 2010; 112(7): 641–5. PMID: 20570038 DOI: 10.1016/j.clineuro.2010.04.020 42. Pennell LM, Fish EN. Interferon‐β regulates dendritic cell activation and migration in experimental autoimmune encephalomyelitis. Immunology. 2017; 152(3): 439–50. PMID: 28646573 DOI: 10.1111/imm.12781 43. Plosker GL. Interferon-β-1b: a review of its use in multiple sclerosis. CNS Drugs. 2011; 25(1): 67–88. PMID: 21128695 DOI: 10.2165/11206430-000000000-00000 44. Alba Palé L, León Caballero J, Samsó Buxareu B, et al. Systematic review of depression in patients with multiple sclerosis and its relationship to interferonβ treatment. Mult Scler Relat Disord. 2017; 17(2017): 138–43. PMID: 29055445 DOI: 10.1016/j.msard.2017.07.008 45. Kirzinger SS, Jones J, Siegwald A, et al. Relationship between disease-modifying therapy and depression in multiple sclerosis. Int J MS Care. 2013; 15(3): 107–12. PMID: 24453772 DOI: 10.7224/1537-2073.2012-036 46. Gentile A, Rossi S, Studer V, et al. Glatiramer acetate protects against inflammatory synaptopathy in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol. 2013; 8(3): 651–63. PMID: 23370991 DOI: 10.1007/s11481-013-9436-x 47. Haji N, Mandolesi G, Gentile A, et al. TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Exp Neurol. 2012; 237(2): 296–303. PMID: 22836148 DOI: 10.1016/j.expneurol.2012.07.010 48. Gentile A, De Vito F, Fresegna D, et al. Exploring the role of microglia in mood disorders associated with experimental multiple sclerosis. Front Cell Neurosci. 2015; 9: 243. PMID: 26161070 DOI: 10.3389/fncel.2015.00243 49. Begum-Haque S, Christy M, Wang Y, et al. Glatiramer acetate biases dendritic cells towards an anti-inflammatory phenotype by modulating OPN, IL-17, and RORγt responses and by increasing IL-10 production in experimental allergic encephalomyelitis. J Neuroimmunol. 2013; 254(1-2): 117–24. PMID: 23141166 DOI: 10.1016/j.jneuroim.2012.10.003 50. Corey-Bloom J, Aikin AM, Gutierrez A, et al. Beneficial effects of glatiramer acetate in Huntington’s disease mouse models: evidence for BDNF-elevating and immunomodulatory mechanisms. Brain Res. 2017; 1673: 102–110. PMID: 28823953 DOI: 10.1016/j.brainres.2017.08.013 51. Gudasheva TA, Tarasiuk AV, Povarnina PYu, et al. [Brain-derived neurotrophic factor and its low-molecular mimetics]. Farmakokinetika i farmakodinamika [Pharmacokinetics and Pharmacodynamics]. 2017; (3): 3–13. Russian. 52. Berger T. Immunological processes related to cognitive impairment in MS. Acta Neurol Scand. 2016; 134 (Suppl 200): 34–8. PMID: 27580904 DOI: 10.1111/ane.12647 53. Di Filippo M, de Iure A, Giampà C, et al. Persistent activation of microglia and NADPH oxidase [corrected] drive hippocampal dysfunction in experimental multiple sclerosis. Sci Rep. 2016; 6: 20926. PMID: 26887636 DOI: 10.1038/srep20926 54. Mudò G, Frinchi M, Nuzzo D, et al. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer's disease. J Neuroinflammation. 2019; 16(1): 44. PMID: 30777084 DOI: 10.1186/s12974-019-1417-4 55. Paraiso HC, Kuo PC, Curfman ET, et al. Dimethyl fumarate attenuates reactive microglia and long-term memory deficits following systemic immune challenge. J Neuroinflammation. 2018; 15(1): 100.PMID: 29598822 DOI: 10.1186/s12974-018-1125-5 56. Di Bari M, Di Pinto G, Reale M, et al. Cholinergic System and Neuroinflammation: Implication in Multiple Sclerosis. Cent Nerv Syst Agents Med Chem. 2017; 17(2): 109–15. PMID: 27550615 DOI: 10.2174/1871524916666160822115133 57. Luessi F, Kraus S, Trinschek B, et al. FTY720 (fingolimod) treatment tips the balance towards less immunogenic antigen-presenting cells in patients with multiple sclerosis. Mult Scler. 2015; 21(14): 1811–22. PMID: 25732840 DOI: 10.1177/1352458515574895 58. Hunter SF, Agius M, Miller DM, et al. Impact of a switch to fingolimod on depressive symptoms in patients with relapsing multiple sclerosis: An analysis from the EPOC (Evaluate Patient OutComes) trial. J Neurol Sci. 2016; 365(2016): 190–8. DOI: 10.1016/j.jns.2016.03.024 59. Comi G, Patti F, Rocca MA, et al. Efficacy of fingolimod and interferon beta-1b on cognitive, MRI, and clinical outcomes in relapsing–remitting multiple sclerosis: an 18-month, open-label, rater-blinded, randomised, multicentre study (the GOLDEN study). J Neurol. 2017; 264(12): 2436–49. DOI: 10.1007/s00415-017-8642-5
DOI: http://dx.doi.org/10.24411/1560-957X-2019-11943
Article Metrics
Metrics powered by PLOS ALM