Dynamics and role of markers of brain damage in the schizophrenic process (analytical review)
Suggested citation:
Petrova NN, Voinkova EE, Dorofeykova MV. [Dynamics and role of markers of brain damage in the schizophrenic process (analytical review)]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2014;(1):43-49. Russian
Schizophrenia is a severe mental illness that ranks among the top 10 causes of disability. The high level of disability of schizophrenic patients suggests the need for gaining insight into the pathogenic mechanisms and elaborating prognostic criteria which is crucial for providing tailored therapy and maintaining compliance among these patients. It may be deemed promising to use as objective indicators reflecting the dynamics of neurophysiological processes in schizophrenia neurobiochemical markers of brain damage such as protein S100B, glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE). The above proteins are highly specific. It was found that further research is needed to correlate dynamics of the clinical picture with manifestations of imbalance of biochemical processes occurring in the brain with an analysis of the potential use of neuromarkers as predictors of disease progression and treatment response.
1. Любов Е.Б. Социально-экономическое бремя шизофрении // Соц. и клин. психиатрия. - 2012. - Т. 22, № 2. - С. 100-108. 2. Ястребов В.С., Митихина И.А., Митихин В.Г. и др. Психическое здоровье населения мира: социально-экономический аспект (по данным зарубежных исследований 2000-2010 гг.) // Журнал неврол. и психиатр. им. С.С. Корсакова. - 2012. - № 2. - С. 4-13. 3. Шмуклер А.Б. Проблема шизофрении в современных исследованиях: достижения и дискуссионные вопросы. - М.: Медпрактика-М, 2011. - С. 11-21. 4. Konrad A., Winterer G. Disturbed structural connectivity in schizophrenia - primary factor in pathology or epiphenomenon? // Schizophr. Bull. - 2008. - Vol. 34, N 1. - P. 72-92. 5. Stephan K.A., Baldeweg T., Friston K.J. Synaptic plasticity and disconnection in schizophrenia // Biol. Psychiatry. - 2006. - Vol. 59. - P. 929-939. 6. Stephan K.A., Friston K.J., Frith C.D. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring // Schizophr. Bull. - 2009. - Vol. 35, N 3. - P. 509-527. 7. Мосолов С.Н., Смулевич А.Б., Незнанов Н.Г. и др. Применение агонистов mGlu2/3 - новый подход к терапии шизофрении: результаты рандомизированного двойного слепого исследования // Журнал неврол. и психиатр. им. С.С. Корсакова. - 2010. - № 7. - С. 16-23. 8. Adami C., Sorci G., Blasi E. et al. S100B Expression in and effects on microglia // Glia. - 2001. - Vol. 33. - P. 131-142. 9. Nishiyama H., Knopfel T., Endo S., Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity // Proc. Natl Acad. Sci. USA. - 2002. - Vol. 99. - P. 4037-4042. 10. Moore B.W. A soluble protein characteristic of the nervous system // Biochem. Biophys. Res. Commun. - 1965. - Vol. 19. - P. 739-744. 11. Траилин А.В., Левада О.А. Белок S100В: нейробиология, значение при неврологической и психиатрической патологии // Междунар. невролог. журн. - 2009. - № 1 (23). - С. 166-175. 12. Hu J., Van Eldik L.J. Glial derived proteins activate cultured astrocytes and enhance β-amyloid-induced astrocyte activation // Brain Res. - 1999. - Vol. 842. - P. 46-54. 13. Biberthaler P., Mussack T., Wiedemann E. et al. Elevated serum levels of S-100B reflect the extent of brain injury in alcohol intoxicated patients after mild head trauma // Shock. - 2001. - Vol. 16. - P. 97-101. 14. Ahmad O., Wardlaw J., Whiteley W.N. Correlation of levels of neuronal and glial markers with radiological measures of infarct volume in ischaemic stroke: a systematic review // Cerebrovasc. Dis. - 2012. - Vol. 33, N 1. - P. 47-54. 15. Romner B., Ingebrigtsen T., Kongstad P., Borgesen S.E. Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings // J. Neurotrauma. - 2000. - Vol. 17. - P. 641-647. 16. Waterloo K., Ingebrigtsen T., Romner B. Neuropsychological function in patients with increased serum of protein S-100 after minor head injury // Acta Neurochir. (Wien). - 1997. - Vol. 139. - P. 26-32. 17. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles // Int. J. Biochem. Cell Biol. - 2001. - Vol. 33. - P. 637-668. 18. Heizmann C.W., Fritz G., Schдfer B.W. S100 proteins: structure, functions and pathology // Front. Biosci. - 2002. - Vol. 7. - P. 1356-1368. 19. Gruden M.A., Davudova T.B., Malisauskas M. et al. Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: Autoantibodies to Aβ ((25-35)) oligomers, S100b and neurotransmitters // J. Neuroimmun. - 2007. - Vol. 186. - P. 181-192. 20. El-Sayed D.A., Salah H., El-Abyary M.M. et al. Alzheimer’s disease: serum biological markers in relation to disease severity // Egypt J. Neurol. Psychiat. Neurosurg. - 2009. - Vol. 46, N 1. - P. 177-183. 21. Цыбиков Н.Н., Говорин Н.В., Цыбикова Е.А., Березкин А.С. Уровень белка S100В и аутоантител к нему в сыворотке крови и ликворе при алкогольном делирии // Сибирск. вест. психиатр. и наркол. - 2008. - № 1 (48). - С. 71-73. 22. Lara D.R., Gama C.S., Belmonte-de-Abreu P. et al. Increased serum S100B protein in schizophrenia: a study in medicationfree patients // J. Psychiatr. Res. - 2001. - Vol. 35. - P. 11-14. 23. Rothermundt M., Missler U., Arolt V. et al. Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology // Mol. Psychiatry. - 2001. - Vol. 6. - P. 445-449. 24. Gattaz W.F., Lara D.R., Elkis H. et al. Decreased S100-beta protein in schizophrenia: preliminary evidence // Schizophr. Res. - 2000. - Vol. 43. - P. 91-95. 25. Rothermundt M., Ponath G., Glaser T. et al. S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia // Neuropsychopharmacology - 2004. - Vol. 29, N 5. - P. 1004-1011. 26. Qi L.Y., Xiu M.H., Chen da C. et al. Increased serum S100B levels in chronic schizophrenic patients on long-term clozapine or typical antipsychotics // Neurosci. Lett. - 2009. - Vol. 462, N 2. - P. 113-117. 27. Rothermundt M., Peters M., Prehn J.H.M., Arolt V. S100B in brain damage and neurodegeneration // Microsc. Res. Technol. - 2003. - Vol. 60. - P. 614-632. 28. Rothermundt M., Falkai P., Ponath G. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF // Mol. Psychiatry - 2004. - Vol. 9. - P. 897-899. 29. Гурина О.И. Клинико-иммунохимическая оценка нарушений функций гематоэнцефалического барьера у недоношенных детей с перинатальными поражениями ЦНС: Автореф. дис. - канд. мед. наук. - М., 1996. 30. Laino Ch. Serum GFAP levels may predict malignant course of infarction // Neurology Today. - 2004. - Vol. 4, N 5. - P. 24-25. 31. Моргун А.В., Овчаренко Н.В., Таранушенко Т.Е. и др. Маркеры апоптоза и нейроспецифические белки в диагностике перинатальных поражений центральной нервной системы у новорожденных детей // Сибирск. мед. обозр. - 2013. - № 3. - С. 3-10. 32. Middeldorp J., Hol E.M. GFAP in health and disease // Prog. Neurobiol. - 2011. - Vol. 93, N 3. - P. 421-443. 33. Toro C.T., Hallak J.E., Dunham J.S. et al. Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder // Neurosci. Lett. - 2006. - Vol. 404, N 3. - P. 276-281. 34. Webster M.J., O’Grady J., Kleinman J.E. et al. Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia // Neuroscience. - 2005. - Vol. 133, N 2. - P. 453-461. 35. Arnold S.E, Franz B.R, Trojanowski J.Q. et al. Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia // Acta Neuropathol. - 1996. - Vol. 91, N 3. - P. 269-277. 36. Говорин Н.В., Васильева А.И. Влияние галоперидола и рисперидона на нейромаркеры и показатели эндотелиальной дисфункции у больных с острой шизофренией // Журнал неврол. и психиатр. им. С.С. Корсакова. - 2011. - № 3. - С. 54-57. 37. Marangos P.J., Schmechel D.E. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells // Ann. Rev. Neurosci. - 1987. - Vol. 10. - P. 269-295. 38. Tsokos M., Linnoila R.S., Chandra R.S., Triche T.J. Neuronspecific enolase in the diagnosis of neuroblastoma and other small, round-cell tumors in children // Hum. Pathol. - 1984. - Vol. 15. - P. 75-86. 39. Wick M.R., Scheithauer W., Kovacs K. Neuron specific enolase in neuroendocrine tumors of the thymus, bronchia and skin // Am. J. Pathol. - 1983. - Vol. 79. - P. 703-707. 40. Fujiwara H., Arima N., Ohtsubo H. et al. Clinical significance of serum neuron-specific enolase in patients with adult T-cell leukemia // Am. J. Hematol. - 2002. - Vol. 71, N 2. - P. 80-84. 41. Rabinowicz A.L., Correale J., Boutros R.B. et al. Neuronspecific enolase is increased after single seizures during inpatient video EEG monitoring // Epilepsia. - 1996. - Vol. 37. - P. 122-125. 42. Georgiadis D., Berger A., Kowatchev E. et al. Predictive value of S-100beta and neuron specific enolase serum levels for adverse neurologic outcome after cardiac surgery // J. Thorac. Cardiovasc. Surg. - 2000. - Vol. 119. - P. 138-147. 43. Жукова И.А., Алифирова В.М., Жукова Н.Г. Нейронспецифическая енолаза как неспецифический маркер нейродегенеративного процесса // Бюл. сибирск. мед. - 2011. - № 2. - С. 15-21. 44. Egan M.F., el-Mallakh R.S., Suddath R.L. et al. Cerebrospinal fluid and serum levels of neuron-specific enolase in patients with schizophrenia // Psychiatry Res. - 1992. - Vol. 2. - P.187-195. 45. Steiner J., Bielau H., Bernstein H.G. et al. Increased cerebrospinal fluid and serum levels of S100B in first onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone specific enolase from glia or neurons // J. Neurol. Neurosurg. Psychiatry. - 2006. - Vol. 77, N 11. - P. 1284-1287. 46. Говорин Н.В., Васильева А.И. Нейромаркеры и показатели эндотелиальной дисфункции при острой шизофрении // Соц. и клин. психиатрия. - 2011. - № 1. - C. 29-33. 47. Wright, I.C., Rabe-Hesketh, S., Woodruff P.W. et al. Metaanalysis of regional brain volumes in schizophrenia // Am. J. Psychiatry - 2000. - Vol. 157. - P. 16-25. 48. Frumin M., Golland P., Kikinis R. et al. Shape differences in the corpus callosum in first-episode schizophrenia and firstepisode psychotic affective disorder // Am. J. Psychiatry. - 2002. - Vol. 159, N 5. - P. 866-868. 49. Bagary M.S., Symms M.R., Barker G.J. et al. Gray and white matter brain abnormalities in first-episode schizophrenia inferred from magnetization transfer imaging // Arch. Gen. Psychiatry. - 2003. - Vol. 60, N 8. - P. 779-788. 50. Whitworth A.B., Kemmler G., Honeder M. et al. Longitudinal volumetric MRI study in first- and multiple-episode male schizophrenia patients // Psychiatry Res. - 2005. - Vol. 140. - P. 225-237. 51. Van Haren N.E., Cahn W., Hulshoff Pol H.E., Kahn R.S. Schizophrenia as a progressive brain disease // Eur. Psychiatry. - 2008. - Vol. 23. - P. 245-254. 52. Noda M., Nakanishi H., Nabekura J. et al. AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia // J. Neurosci. - 2000. - Vol. 20, N 1. - P. 251-258. 53. Yamada J., Sawada M., Nakanishi H. Cell cycle-dependent regulation of kainate-induced inward currents in microglia // Biochem. Biophys. Res. Commun. - 2006. - Vol. 349, N 3. - P. 913-919. 54. Коломеец Н.С. Значение реактивности микроглии в патологии мозга при шизофрении // Журнал неврол. и психиатр. им. С.С. Корсакова. - 2009. - Т. 109. - С. 60-63. 55. Liu B. Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease // AAPS J. - 2006. - Vol. 8, N 3. - P. 606-621. 56. Tai Y.F., Pavese N., Gerhard A. et al. Microglial activation in presymptomatic Huntington’s disease gene carriers // Brain. - 2007. - Vol. 30. - P. 1759-1766.
DOI: http://dx.doi.org/10.24411/1560-957X-2014-1%25x
Article Metrics
Metrics powered by PLOS ALM