Experimental models of the formation of physical dependence from alcohol
Suggested citation:
Proskuryakova TV, Shokhonova VA, Shamakina IYu. [Experimental models of the formation of physical dependence from alcohol]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2021;(4):80-92. Russian
Current review is aimed at experimental approaches being currently used to study basic mechanisms of alcohol abuse. Here we analyze in details the main strategies for developing animal models: forced alcohol exposure, free-choice alcohol intake, intermittent access to alcohol, operant self-administration, compulsive-like aversion-resistant intake. The impact of various types of alcohol exposure (alcohol-containing diet, exposure to ethanol vapor using inhalation, per os alcohol administration, etc.), genotype and age of the animals in producing alcohol dependence are discussed. In sum, this review highlights advantages and limitations of different methodologies for translational research on alcohol use disorder.
Keywords alcohol; dependence; compulsion; withdrawal syndrome
1. Becker HC. Alcohol Dependence, Withdrawal and Relapse. Alcohol Res Health. 2008;31(4):348–61. PMID: 23584009 2. Ivanec NN. [O roli lichnostnogo faktora pri hronicheskom alkogolizme]. Voprosy psihonevrologii. 1980;(8):54–6. (In Russ.) 3. Ivanec NN, Igonin AL. [Vzaimosvjaz' pokazatelej progredientnosti alkogolizma s nekotorymi premorbidnymi faktorami]. Zh Nevrol Psikhiatr Im SS Korsakova. 1983;83(8):1222–7. (In Russ.) 4. Garland EL, Boettiger CA, Howard MO. Targeting cognitive-affective risk mechanisms in stress-precipitated alcohol dependence: an integrated, biopsychosocial model of automaticity, allostasis, and addiction. Med Hypotheses. 2011;76(5):745–54. DOI: https://doi.org/10.1016/j.mehy.2011.02.014; PMID: 21354711 5. Isbell H, Fraser HF, Wikler A, et al. An experimental study of the etiology of rum fits and delirium tremens. Quart J Stud Alcohol. 1955;16:1–33. PMID: 14372008 6. Anohina IP. [Osnovnye biologicheskie mehanizmy boleznej zavisimosti ot psihoaktivnyh veshhestv]. Voprosy narkologii. 2017;(2–3):15–41. (In Russ.) 7. Koob GF, Le Moal M. Drug addiction, dysregulation of reward and allostasis. Neuropsychopharmacology. 2001;24(2):97–129. DOI: https://doi.org/10.1016/S0893-133X(00)00195-0; PMID: 11120394 8. Galesi FL, Ayanwuyi LO, Mijares MG, et al. Role of Hypothalamic-Pituitary-Adrenal axis and Corticotropin-Releasing Factor stress system on cue-induced relapse to alcohol seeking. Eur J Pharmacol. 2016;5(788):84–9. DOI: https://doi.org/10.1016/j.ejphar.2016.06.020; PMID: 27316790 9. Heilig M, Koob GF. A key role for corticotropin-releasing factor in alcohol dependence. Trends Neurosci. 2007;30(8):399–406. DOI: https://doi.org/10.1016/j.tins.2007.06.006; PMID: 17629579 10. Kwako LE, Spagnolo PA, Schwandt ML, et al. The Corticotropin Releasing Hormone-1 (CRH1) Receptor Antagonist Pexacerfont in Alcohol Dependence: A Randomized Controlled Experimental Medicine Study. Neuropsychopharmacology. 2015;13;40(5):1053–63. DOI: https://doi.org/10.1038/npp.2014.306; PMID: 25409596 11. Schwandt ML, Cortes CR, Kwako LE, et al. The CRF1 Antagonist Verucerfont in Anxious Alcohol-Dependent Women: Translation of Neuroendocrine, But not of Anti-Craving Effects. Neuropsychopharmacology. 2016;41(12):2818–29. DOI: https://doi.org/10.1038/npp.2016.61; PMID: 27109623 12. Anohina IP, Ivanec NN, Al'tshuler VB, et al. [Primenenie preparata takus dlja lechenija alkogol'nogo abstinentnogo sindroma]. Voprosy narkologii. 1992;(3–4):67–70. (In Russ.) 13. Anohin PK, Shamakina IJu, Proskurjakova TV, et al. [Selektivnyj agonist D2-receptorov kabergolin snizhaet potreblenie alkogolja i povyshaet uroven' mRNK DRD2 v mozge krys s hronicheskoj alkogol'noj intoksikaciej]. Nejrohimija. 2017;34(1):72–9. (In Russ.) 14. Litten RZ, Wilford BB, Falk DE, et al. Potential medications for the treatment of alcohol use disorder: an evaluation of clinical efficacy and safety. Subst Abus. 2016;37(2):286–98. DOI: https://doi.org/10.1080/08897077.2015.1133472; PMID: 26928397 15. Kranzler HR, Soyka M. Diagnosis and pharmacotherapy of alcohol use disorder: a review. JAMA. 2018;320:815–24. DOI: 10.1001/jama.2018.11406; PMID: 30167705 16. Guerzoni S, Pellesi L, Pini LA, et al. Drug-drug interactions in the treatment for alcohol use disorders: A comprehensive review. Pharmacol Res. 2018;133:65–76. DOI: https://doi.org/10.1016/j.phrs.2018.04.024; PMID: 29719204 17. Shekunova EV, Kashkin VA, Makarova MN, et al. [Modelirovanie alkogol'noj zavisimosti u zhivotnyh]. Mezhdunarodnyj vestnik veterinarii. 2015;(3):84–91. (In Russ.) 18. Anohina IP. [Udovol'stvie i patogenez boleznej zavisimosti]. Voprosy narkologii. 2018;(2):22–34. (In Russ.) 19. Labots M, Cousijn J, Jolink LA, et al. Age-Related Differences in Alcohol Intake and Control Over Alcohol Seeking in Rats. Front Psychiatry. 2018;9:419. DOI: https://doi.org/10.3389/fpsyt.2018.00419; PMID: 30233434 20. Rogers J, Wiener SG, Bloom FE. Long-term ethanol administration methods for rats: advantages of inhalation over intubation or liquid diets. Behav Neural Biol. 1979;27(4):466–86. DOI: https://doi.org/10.1016/s0163-1047(79)92061-2; PMID: 575037 21. Ruwe WD, Bauce L, Flemons WW, et al. Alcohol dependence and withdrawal in the rat. An effective means of induction and assessment. J Pharmacol Method. 1986;15(3):225–34. DOI: https://doi.org/10.1016/0160-5402(86)90052-5; PMID: 3713203 22. O’Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease. Hepatology. 2009;105(1):14–32. DOI: https://doi.org/10.1038/ajg.2009.593; PMID: 19904248 23. Seitz HK, Stickel F. Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr. 2010;5(2):121–8. DOI: https://doi.org/10.1007/s12263-009-0154-1; PMID: 19847467 24. Hanck C, Whitcomb DC. Alcoholic pancreatitis. Gastroenterol. 2004;33(4):751–65. DOI: https://doi.org/10.1016/j.gtc.2004.07.002; PMID: 15528016 25. Jeong WI, Gao B. Innate immunity and alcoholic liver fibrosis. J Gastroenterol Hepatol. 2008;23(Suppl 1):112–8. DOI: https://doi.org/10.1111/j.1440-1746.2007.05274.x; PMID: 18336653 26. Lau A, von Dossov V, Sander M, et al. Alcohol use disorder and perioperative immune dysfunction. Anesth Analg. 2009;108(3):916–20. DOI: https://doi.org/10.1213/ane.0b013e318193fd89; PMID:19224804 27. Proskurjakova TV, Nuzhnyj VP, Rozhanec VV. Farmakologija i toksikologija psihoaktivnyh veshhestv. In: Ivanеc NN, Anohina IP, Vinnikova MA, editors. Narkologija. Nacional'noe rukovodstvo. Moscow; 2008. p. 134–74. (In Russ.) 28. Panchenko LF, Moiseev VS, Pirozhkov SV, et al. [Soderzhanie markerov vospalenija i citokinov v krovi bol'nyh alkogol'noj kardiomiopatiej i ishemicheskoj bolezn'ju serdca na raznyh stadijah serdechnoj nedostatochnosti]. Kardiologija. 2015;3:41–8. (In Russ.) 29. Panchenko LF, Pirozhkov SV, Baronec VJu, et al. [Soderzhanie markerov jendotelial'noj disfunkcii i mediatorov vospalenija u bol'nyh alkogolizmom s hronicheskoj serdechnoj nedostatochnost'ju na konechnyh stadijah razvitija]. Narkologija. 2018;17(2):20–8. (In Russ.) 30. Lester D, Freed EX. Criteria for an animal model of alcoholism. Pharmacol Biochem Behav. 1973;1(1):103–7. DOI: https://doi.org/10.1016/0091-3057(73)90062-2; PMID: 4204511 31. Majchrowicz E. Induction of Physical Dependence upon Ethanol and the Associated Behavioral Changes in Rats. Psychopharmacologia (Berl.). 1975;43(3):245–54. DOI: https://doi.org/10.1007/BF00429258; PMID: 1237914 32. Goldstein DB. Physical dependence on alcohol in mice. Fed Proc. 1975;34(10):1953–61. PMID: 1098938 33. Budygin EA, Oleson EB, Mathews TA, et al. Effects of chronic alcohol exposure on dopamine uptake in rat nucleus accumbens and caudate putamen. Psychopharmacology (Berl.). 2007;193(4):495–501. DOI: https://doi.org/10.1007/s00213-007-0812-1; PMID: 17492432 34. Roberto M, Madamba SG, Stouffer DG, et al. Increased GABA release in the central amygdala of ethanol-dependent rats. J Neurosci. 2004;24(45):10159–66. DOI: https://doi.org/10.1523/JNEUROSCI.3004-04.2004; PMID: 15537886 35. MacLeand RR, Valentine GW, Jatlow PI, et al. Inhalation of Alcohol Vapor: Measurement an Implications. Alcohol Clin Exp Res. 2017;41(2):238–50. DOI: https://doi.org/10.1111/acer.13291; PMID: 28054395 36. Macey DJ, Schulteis G, Heinrichs SC, et al. Time-dependent quantifiable withdrawal from ethanol in the rat: effect of method of dependence induction. Alcohol. 1996;13(2):163–70. DOI: https://doi.org/10.1016/0741-8329(95)02030-6; PMID: 8814651 37. Meisch RA, Thompson T. Ethanol intake during schedule-induced polydipsia. Physiol Behav. 1972;8(3):471–5. DOI: https://doi.org/10.1016/0031-9384(72)90331-9; PMID: 5037545 38. Wayner MJ, Greenberg I. Effects of hypothalamic stimulation, acclimation and periodic withdrawal on ethanol consumption. Physiol Behav. 1972;9(5):737–40. DOI: https://doi.org/10.1016/0031-9384(72)90043-1; PMID: 4570173 39. Myers RD, Robinson DE, West MW. Genetics of alcoholism: rapid development of a new high-ethanol-preferring (HEP) strain of female and male rats. Alcohol. 1998;16(4):343–57. DOI: https://doi.org/10.1016/s0741-8329(98)00031-7; PMID: 9818988 40. Becker HC, Lopez MF. Increased ethanol drinking after repeated chronic ethanol exposure and withdrawal experience in C57BL/6 mice. Alcohol Clin Exp Res. 2004;28(12):1829–38. DOI: https://doi.org/10.1097/01.alc.0000149977.95306.3a; PMID: 15608599 41. Kimbrough A, Kim S, Cole M. Intermittent Access to Ethanol Drinking Facilitates the Transition to Excessive Drinking After Chronic Intermittent Ethanol Vapor Exposure. Alcohol Clin Exp Res. 2017;41(8):1502–9. DOI: https://doi.org/10.1111/acer.13434; PMID: 28679148 42. Sinclair JD, Hyytia P, Nurmi M. The limited access paradigm: description one method. Alcohol. 1992;9(5):441–4. DOI: https://doi.org/10.1016/0741-8329(92)90045-c; PMID: 1418671 43. Wise RA. Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia. 1973;29(3):203–10. DOI: https://doi.org/10.1007/BF00414034; PMID: 4702273 44. Rimondini R, Arlinde C, Sommer W, et al. Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J. 2002;16(1):27–35. DOI: https://doi.org/10.1096/fj.01-0593com; PMID: 11772933 45. Blaine SK, Sinha R. Alcohol, stress and glucocorticoids: From risk to dependence and relapse in alcohol use disorders. Neuropharmacology. 2017;1(122):136–47. DOI: https://doi.org/10.1016/j.neuropharm.2017.01.037; PMID: 28159647 46. Simms JA, Steensland P, Medina B, et al. Intermittent Access to 20% Ethanol Induces High Ethanol Consumption in Long–Evans and Wistar Rats. Alcohol Clin Exp Res. 2008;32(10):1816–23. DOI: https://doi.org/10.1111/j.1530-0277.2008.00753.x; PMID: 18671810 47. Bell RL, Rodd ZA, Lumeng L, et al. The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol. 2006;11(3–4):270–88. DOI: https://doi.org/10.1111/j.1369-1600.2005.00029.x; PMID: 16961759 48. Fu R, Gregor D, Peng Z, et al. Chronic intermittent voluntary drinking induces hyperalgesia in Sprague-Dawley rats. Int J Physiol Pathophysiol Pharmacol. 2015;7(3):136–44. PMID: 26823962 49. Rhodes JS, Ford MM, Yu CH, et al. Mouse Inbred Strain Differences in Ethanol Drinking to Intoxication. Genes Brain Behav. 2007;6(1):1–18. DOI: https://doi.org/10.1111/j.1601-183X.2006.00210.x; PMID: 17233637 50. Delker E, Brown K, Hasin DS. Alcohol consumption in demographic population subgroups: an epidemiological overview. Alcohol Res. 2016;38(1):7–15. PMID: 27159807 51. Gilpin NV, Richardson HN, Lumeng L, et al. Addiction-induced alcohol consumption by alcohol-preferred (P) rats and outbred Wistar rats. Alcohol Clin Exp Res. 2008;32(9):1688–96. DOI: https://doi.org/10.1111/j.1530-0277.2008.00678.x; PMID: 18482158 52. O'Dell LE, Roberts AJ, Smith RT, et al. Enhanced alcohol self-administration after intermittent versus continuous alcohol vapor exposure. Alcohol Clin Exp Res. 2004;28(11):1676–82. DOI: https://doi.org/10.1097/01.alc.0000145781.11923.4e; PMID: 15547454 53. Vendruscolo LF, Barbier E, Schlosburg JE, et al. Corticosteroid-dependent plasticity mediates compulsive alcohol drinking in rats. J Neurosci. 2012;32(22):7563–71. DOI: https://doi.org/10.1523/JNEUROSCI.0069-12.2012; PMID: 22649234 54. Lesscher HMD, Linda WM, van Kerkhoff LWM, et al. Inflexible and indifferent alcohol drinking in male mice. Alcohol Clin Exp. 2010;34(7):1219–25. DOI: https://doi.org/10.1111/j.1530-0277.2010.01199.x; PMID: 20477770 55. Hopf FW, Chang SJ, Sparta DR, et al. Alcohol motivation becomes resistant to quinine tampering after 3-4 months of intermittent alcohol consumption. Alcohol Clin Exp Res. 2010;34(9):1565–73. DOI: https://doi.org/10.1111/j.1530-0277.2010.01241.x; PMID: 20586757 56. Radke AK, Jury NJ, Kocharian A, et al. Chronic EtOH effects on putative measures of compulsive behavior in mice. Addict Biol. 2017;22(2):423–34. DOI: https://doi.org/10.1111/adb.12342; PMID: 26687341 57. Vollstadt-Klein S, Wichert S, Rabinstein J, et al. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction. 2010;105(10):1741–9. DOI: https://doi.org/10.1111/j.1360-0443.2010.03022.x; PMID: 20670348 58. Sebold M, Nebe S, Garbusow M, et al. When habits are dangerous: Alcohol expectancies and habitual decision making predict relapse in alcohol dependence. Biol Psychiatry. 2017;82(11):847–56. DOI: https://doi.org/10.1016/j.biopsych.2017.04.019; PMID: 28673442 59. Grodin EN, Sussman L, Sundby K, et al. Neural Correlates of Compulsive Alcohol Seeking in Heavy Drinkers. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(12):1022–31. DOI: https://doi.org/10.1016/j.bpsc.2018.06.009; PMID: 30143454 60. Schoenbaum G, Shaham Y. The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry. 2008;63(3):256–62. DOI: https://doi.org/10.1016/j.biopsych.2007.06.003; PMID: 17719014 61. Patton MS, Heckman M, Kim C, et al. Compulsive alcohol consumption is regulated by dorsal striatum fast-spiking interneurons. Neuropsychopharmacology. 2021;46(2):351–9. DOI: https://doi.org/10.1038/s41386-020-0766-0; PMID: 32663841 62. Seif T, Chang S-J, Simms JA, et al. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat Neurosci. 2013;16(8):1094–100. DOI: https://doi.org/10.1038/nn.3445; PMID: 23817545 63. Seif T, Simms JA, Lei K. D-Serine and D-Cycloserine Reduce Compulsive Alcohol Intake in Rats. Neuropsychopharmacology. 2015;40(10):2357–67. DOI: https://doi.org/10.1038/npp.2015.84; PMID: 25801502 64. Giuliano С, Peña-Oliver Н, Goodlett CR, et al. Evidence for a Long-Lasting Compulsive Alcohol Seeking Phenotype in Rats. Neuropsychopharmacology. 2018;43(4):728–38. DOI: https://doi.org/10.1038/npp.2017.105; PMID: 28553834 65. Brodie MS, Appel SB. Dopaminergic neurons in the ventral tegmental area of C57BL/6J and DBA/2J mice differ in sensitivity to ethanol excitation. Alcohol Clin Exp Res. 2000;24(7):1120–4. PMID: 10924018 66. Chung C-S, Wang J, Wehman M, et al. Severity of alcohol withdrawal symptoms depends on developmental stage of Long-Evans rats. Pharmacol Biochem Behav. 2008;89(2):137–44. DOI: https://doi.org/10.1016/j.pbb.2007.12.002; PMID: 18207224
DOI: http://dx.doi.org/10.47877/1560-957Х-2021-10409
Article Metrics
Metrics powered by PLOS ALM