Revealing subgroups of patients with late-onset depression basing on measurements of blood energy-, glutamate- and glutathione metabolism enzymatic activities
Suggested citation:
Savushkina OK, Boksha IS, Prokhorova TA, et al. [Revealing subgroups of patients with late-onset depression basing on measurements of blood energy-, glutamate- and glutathione metabolism enzymatic activities]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2021;(5):29-39. Russian
In the original study, 41 women and 12 men with depression were examined, and a cluster analysis of biochemical signs was performed in order to identify subgroups of elderly patients with depression based on the measurement of biochemical parameters of blood cells. The same biochemical parameters were assessed in 26 volunteers (17 women and 9 men) without mental and neurological disorders. The patients showed a significant decrease in the activity of platelet glutamate dehydrogenase and glutathione reductase and erythrocyte glutathione-S-transferase compared to the control group. Differences in biochemical signs in different clusters were found to be associated with the clinical characteristics of patients. The study of blood biochemical parameters in late-onset depression enables distinguishing subtypes of clinical and biochemical pictures of depression, which in further research will contribute to the choice of a more successful therapeutic strategy.
Keywords glutamate dehydrogenase; glutathione reductase; glutathione-S-transferase; cytochrome c-oxidase; elderly patients; depression
1. Penninx BW, Milaneschi Y, Lamers F, et al. Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile. BMC Med. 2013;11:129. DOI: https://doi.org/10.1186/1741-7015-11-129; PMID: 23672628; PMCID: PMC3661358 2. Roy-Byrne PP, Davidson KW, Kessler RC, et al. Anxiety disorders and comorbid medical illness. Gen Hosp Psychiatry. 2008;30(3):208–25. DOI: https://doi.org/10.1016/j.genhosppsych.2007.12.006; PMID: 18433653 3. Barnes DE, Alexopoulos GS, Lopez OL, et al. Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Arch Gen Psychiatry. 2006; 63(3):273–9. DOI: https://doi.org/10.1001/archpsyc.63.3.273; PMID: 16520432 4. Verhoeven JE, Révész D, Epel ES, et al. Major depressive disorder and accelerated cellular aging: results from a large psychiatric cohort study. Mol Psychiatry. 2014;19(8):895–901. DOI: https://doi.org/10.1038/mp.2013.151; PMID: 24217256 5. Protsenko E, Yang R, Nier B, et al. “GrimAge,” an epigenetic predictor of mortality, is accelerated in major depressive disorder. Transl Psychiatry. 2021;11(1):193. DOI: https://doi.org/10.1038/s41398-021-01302-0; PMID: 33820909; PMCID: PMC8021561 6. Nwachukwu I, Nkire N, Shalaby R, et al. COVID-19 Pandemic: age-related differences in measures of stress, anxiety and depression in Canada. Int J Environ Res Public Health. 2020;17(17):6366. DOI: https://doi.org/10.3390/ijerph17176366; PMID: 32882922; PMCID: PMC7503671 7. Masse-Sibille C, Djamila B, Julie G, et al. Predictors of response and remission to antidepressants in geriatric depression: a systematic review. J Geriatr Psychiatry Neurol. 2018;31(6):283–302. DOI: https://doi.org/10.1177/0891988718807099; PMID: 30477416 8. Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. DOI: https://doi.org/10.2147/CIA.S158513; PMID: 29731617; PMCID: PMC5927356 9. Uzbekov MG, Gurovich IYa, Ivanova SA. [Potential biomarkers of mental disorders from the standpoint of systems biology]. Social'naya i klinicheskaya psihiatriya. 2016;26(1):77–94. (In Russ.) 10. Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology. 2015;144(3):365–73. DOI: https://doi.org/10.1111/imm.12443; PMID: 25580634; PMCID: PMC4557673 11. Gawryluk JW, Wang JF, Andreazza AC, et al. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011;14(1):123–30. DOI: https://doi.org/10.1017/S1461145710000805; PMID: 20633320 12. Cheng SB, Liu HT, Chen SY, et al. Changes of oxidative stress, glutathione, and its dependent antioxidant enzyme activities in patients with hepatocellular carcinoma before and after tumor resection. PLoS One. 2017;12(1):e0170016. DOI: https://doi.org/10.1371/journal.pone.0170016; PMID: 28081247; PMCID: PMC5231264 13. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: gaba and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102(1):75–90. DOI: https://doi.org/10.1016/j.neuron.2019.03.013; PMID: 30946828; PMCID: PMC6450409 14. Smith HQ, Li C, Stanley CA, et al. Glutamate dehydrogenase, a complex enzyme at a crucial metabolic branch point. Neurochem Res. 2019;44(1):117–32. DOI: https://doi.org/10.1007/s11064-017-2428-0; PMID: 29079932; PMCID: PMC5924581 15. Holper L, Ben-Shachar D, Mann JJ. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology. 2019;44(5):837–49. DOI: https://doi.org/10.1038/s41386-018-0090-0; PMID: 29855563; PMCID: PMC6461987 16. Kramer PA, Ravi S, Chacko B, et al. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol. 2014;2:206–10. DOI: https://doi.org/10.1016/j.redox.2013.12.026; PMID: 24494194; PMCID: PMC3909784 17. Zharikov S, Shiva S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem Soc Trans. 2013;41(1):118–23. DOI: https://doi.org/10.1042/BST20120327; PMID: 23356269 18. Tereshkina EB, Savushkina OK, Boksha IS, et al. [Glutathione reductase and glutathione-S-transferase in blood cells in schizophrenia and schizophrenia spectrum disorders]. Zh Nevrol Psikhiatr Im SS Korsakova. 2019;119(2):61–5. (In Russ.) DOI: https://doi.org/10.17116/jnevro201911902161; PMID: 30874529 19. Prokhorova ТА, Boksha IS, Savushkina OK, et al. [Glutamate dehydrogenase activity in platelets of patients with endogenous psychosis]. Zh Nevrol Psikhiatr Im SS Korsakova. 2016;116(3):44–8. (In Russ.) DOI: https://doi.org/10.17116/jnevro20161163144-48; PMID: 27070472 20. Savushkina OK, Tereshkina EB, Prokhorova TA, et al. Platelet glutamate dehydrogenase activity and efficacy of antipsychotic therapy in patients with schizophrenia. J Med Biochem. 2020;39(1):54–9. DOI: https://doi.org/10.2478/jomb-2019-0018; PMID: 32549778; PMCID: PMC7282235 21. Voegeli G, Cléry-Melin ML, Ramoz N, et al. Progress in elucidating biomarkers of antidepressant pharmacological treatment response: a systematic review and meta-analysis of the last 15 years. Drugs. 2017;77(18):1967–86. DOI: https://doi.org/10.1007/s40265-017-0819-9; PMID: 29094313 22. Woods AG, Wormwood KL, Iosifescu DV, et al. Protein biomarkers in major depressive disorder: an update. Adv Exp Med Biol. 2019;1140:585–600. DOI: https://doi.org/10.1007/978-3-030-15950-4_35; PMID: 31347073 23. Fišar Z, Hansíková H, Křížová J, et al. Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer's disease and depressive disorder. Mitochondrion. 2019;48:67–77. DOI: https://doi.org/10.1016/j.mito.2019.07.013; PMID: 31377247 24. Holper L, Lan MJ, Brown PJ, et al. Brain cytochrome-c-oxidase as a marker of mitochondrial function: A pilot study in major depression using NIRS. Depress Anxiety. 2019;36(8):766–79. DOI: https://doi.org/10.1002/da.22913; PMID: 31111623; PMCID: PMC6716511 25. Prokhorova TA, Savushkina OK, Boksha IS, et al. [The link of platelet cytochrome C-oxidase activity with some clinical parameters of depression in elderly patients]. Zh Nevrol Psikhiatr Im SS Korsakova. 2021;121(3):86–92. (In Russ.) DOI: https://doi.org/10.17116/jnevro202112103186; PMID: 33834723 26. Kim AY, Baik EJ. Glutamate dehydrogenase as a neuroprotective target against neurodegeneration. Neurochem Res. 2019;44(1):147–53. DOI: https://doi.org/10.1007/s11064-018-2467-1; PMID: 29357018 27. Diniz BS, Mendes-Silva AP, Silva LB, et al. Oxidative stress markers imbalance in late-life depression. J Psychiatr Res. 2018;102:29–33. DOI: https://doi.org/10.1016/j.jpsychires.2018.02.023; PMID: 29574402 28. Rapp MA, Dahlman K, Sano M, et al. Neuropsychological differences between late-onset and recurrent geriatric major depression. Am J Psychiatry. 2005;162(4):691–8. DOI: https://doi.org/10.1176/appi.ajp.162.4.691; PMID: 15800140 29. Alexopoulos GS. Mechanisms and treatment of late-life depression. Transl Psychiatry. 2019;9(1):188. DOI: https://doi.org/10.1038/s41398-019-0514-6; PMID: 31383842; PMCID: PMC6683149 30. Manning KJ, Steffens DC. State of the science of neural systems in late-life depression: impact on clinical presentation and treatment outcome. J Am Geriatr Soc. 2018;66(Suppl. 1):S17–S23. DOI: https://doi.org/10.1111/jgs.15353; PMID: 29659005; PMCID: PMC5905432
DOI: http://dx.doi.org/10.47877/1560-957Х-2021-10504
Article Metrics
Metrics powered by PLOS ALM