Генная терапия психических расстройств
|
Полный текст:
Только для подписчиков
|
Рекомендуемое оформление библиографической ссылки:
Попов С.С., Степаненко А.А., Сосновцева А.О., Гурина О.И., Чехонин В.П. Генная терапия психических расстройств // Российский психиатрический журнал. 2025. №5. С. 93-102.
В научном обзоре с целью анализа потенциала генной терапии на основе аденоассоциированных вирусов (AAV) для лечения психических и неврологических расстройств рассматривается данная технология как ответ на глобальную проблему резистентности к традиционным методам. Обзор охватывает ключевые аспекты: обоснование применения AAV-векторов для коррекции нейробиологических нарушений, обобщение многообещающих доклинических результатов (включая улучшение поведенческих и когнитивных функций), а также критический анализ барьеров на пути к клиническому внедрению. К последним относятся необходимость повышения точности доставки, доказательства долгосрочной безопасности и развития этико-правового регулирования. Сделан вывод, что, несмотря на существующие вызовы, генная терапия представляет собой перспективное направление для разработки новых методов лечения психических расстройств.
Ключевые слова аденоассоциированный вирус; генная терапия; деменция; депрессия; зависимость; обсессивно-компульсивное расстройство; шизофрения
1. Davidson BL, Gao G, Berry-Kravis E, et al. Gene-based therapeutics for rare genetic neurodevelopmental psychiatric disorders. Mol Ther. 2022;30(7):2416–28. DOI: 10.1016/j.ymthe.2022.05.014 2. Gelfand Y, Kaplitt MG. Gene therapy for psychiatric disorders. World Neurosurg. 2013;80(3-4):S32.e11–S32.e18. DOI: 10.1016/j.wneu.2012.12.028 3. Thome J, Hässler F, Zachariou V. Gene therapy for psychiatric disorders. World J Biol Psychiatry. 2011;12 Suppl 1(Suppl 1):16–18. DOI: 10.3109/15622975.2011.601927 4. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–78. DOI: 10.1038/s41573-019-0012-9 5. Albert K, Voutilainen MH, Domanskyi A, Airavaara M. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models. Genes (Basel). 2017;8(2):63. DOI: 10.3390/genes8020063 6. Griciuc A, Federico AN, Natasan J, et al. Gene therapy for Alzheimer's disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. Hum Mol Genet. 2020;29(17):2920–35. DOI: 10.1093/hmg/ddaa179 7. Bulcha JT, Wang Y, Ma H, et al. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. DOI: 10.1038/s41392-021-00487-6 8. Otte C, Gold SM, Penninx BW, et al. Major depressive disorder. Nat Rev Dis Primers. 2016;2:16065. DOI: 10.1038/nrdp.2016.65 9. Bromet E, Andrade LH, Hwang I, et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011;9:90. DOI: 10.1186/1741-7015-9-90 10. Flint J, Kendler KS. The genetics of major depression. Neuron. 2014;81(3):484–503. DOI: 10.1016/j.neuron.2014.01.027 11. Chen G, Twyman R, Manji HK. p11 and gene therapy for severe psychiatric disorders: a practical goal? Sci Transl Med. 2010 Oct 20;2(54):54ps51. DOI: 10.1126/scitranslmed.3001754 12. Svenningsson P, Chergui K, Rachleff I, et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science. 2006;311(5757):77–80. DOI: 10.1126/science.1117571 13. Svenningsson P, Greengard P. p11 (S100A10) – an inducible adaptor protein that modulates neuronal functions. Curr Opin Pharmacol. 2007;7(1):27–32. DOI: 10.1016/j.coph.2006.10.001 14. Alexander B, Warner-Schmidt J, Eriksson T, et al. Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med. 2010;2(54):54ra76. DOI: 10.1126/scitranslmed.3001079 15. Gandhi M, Bhatt P, Chauhan G, et al. IGF-II-Conjugated Nanocarrier for Brain-Targeted Delivery of p11 Gene for Depression. AAPS PharmSciTech. 2019;20(2):50. DOI: 10.1208/s12249-018-1206-x 16. Dwivedi Y, Rizavi HS, Conley RR, et al. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003;60(8):804–15. DOI: 10.1001/archpsyc.60.8.804 17. Lee BH, Kim H, Park SH, Kim YK. Decreased plasma BDNF level in depressive patients. J Affect Disord. 2007;101(1-3):239–44. DOI: 10.1016/j.jad.2006.11.005 18. Chen B, Dowlatshahi D, MacQueen GM, et al. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50(4):260–5. DOI: 10.1016/s0006-3223(01)01083-6 19. Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov. 2011;10(3):209–19. DOI: 10.1038/nrd3366 20. Malatynska E, Knapp RJ. Dominant-submissive behavior as models of mania and depression. Neurosci Biobehav Rev. 2005;29(4-5):715–37. DOI: 10.1016/j.neubiorev.2005.03.014 21. Krishnan V, Han MH, Graham DL, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131(2):391–404. DOI: 10.1016/j.cell.2007.09.018 22. Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic Mechanisms of Opioid Addiction. Biol Psychiatry. 2020;87(1):22–33. DOI: 10.1016/j.biopsych.2019.06.027 23. Wang T, Zhu X, Yi H, et al. Viral vector-mediated gene therapy for opioid use disorders. Exp Neurol. 2021;341:113710. DOI: 10.1016/j.expneurol.2021.113710 24. Che X, Liu P, Wu C, et al. Potential role of the ecto-5'-nucleotidase in morphine-induced uridine release and neurobehavioral changes. Neuropharmacology. 2018;141:1–10. DOI: 10.1016/j.neuropharm.2018.07.035 25. Fernàndez-Castillo N, Cabana-Domínguez J, Corominas R, Cormand B. Molecular genetics of cocaine use disorders in humans. Mol Psychiatry. 2022;27(1):624-639. DOI: 10.1038/s41380-021-01256-1 26. Acosta JI, Boynton FA, Kirschner KF, Neisewander JL. Stimulation of 5-HT1B receptors decreases cocaine- and sucrose-seeking behavior. Pharmacol Biochem Behav. 2005;80(2):297–307. DOI: 10.1016/j.pbb.2004.12.001 27. Barot SK, Ferguson SM, Neumaier JF. 5-HT(1B) receptors in nucleus accumbens efferents enhance both rewarding and aversive effects of cocaine. Eur J Neurosci. 2007;25(10):3125–31. DOI: 10.1111/j.1460-9568.2007.05568.x 28. McPheeters M, O'Connor EA, Riley S, et al. Pharmacotherapy for Alcohol Use Disorder: A Systematic Review and Meta-Analysis. JAMA. 2023;330(17):1653–65. DOI: 10.1001/jama.2023.19761 29. Ford MM, George BE, Van Laar VS, et al. GDNF gene therapy for alcohol use disorder in male non-human primates. Nat Med. 2023;29(8):2030–40. DOI: 10.1038/s41591-023-02463-9 30. Thanos PK, Volkow ND, Freimuth P, et al. Overexpression of dopamine D2 receptors reduces alcohol self-administration. J Neurochem. 2001;78(5):1094–103. DOI: 10.1046/j.1471-4159.2001.00492.x 31. Thanos PK, Rivera SN, Weaver K, et al. Dopamine D2R DNA transfer in dopamine D2 receptor-deficient mice: effects on ethanol drinking. Life Sci. 2005;77(2):130–9. DOI: 10.1016/j.lfs.2004.10.061 32. McCance-Katz EF, Kosten TR, Jatlow P. Concurrent use of cocaine and alcohol is more potent and potentially more toxic than use of either alone – a multiple-dose study. Biol Psychiatry. 1998;44(4):250–9. DOI: 10.1016/s0006-3223(97)00426-5 33. Kong Q, Li Y, Yue J, Wu X, Xu M. Reducing alcohol and/or cocaine-induced reward and toxicity via an epidermal stem cell-based gene delivery platform. Mol Psychiatry. 2021;26(9):5266–76. DOI: 10.1038/s41380-021-01043-y 34. Blum K, Thanos PK, Badgaiyan RD, et al. Neurogenetics and gene therapy for reward deficiency syndrome: are we going to the Promised Land? Expert Opin Biol Ther. 2015;15(7):973–85. DOI: 10.1517/14712598.2015.1045871 35. Pons S, Fattore L, Cossu G, et al. Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci. 2008;28(47):12318–27. DOI: 10.1523/JNEUROSCI.3918-08.2008 36. Orejarena MJ, Herrera-Solís A, Pons S, et al. Selective re-expression of β2 nicotinic acetylcholine receptor subunits in the ventral tegmental area of the mouse restores intravenous nicotine self-administration. Neuropharmacology. 2012;63(2):235–41. DOI: 10.1016/j.neuropharm.2012.03.011 37. Arguello PA, Markx S, Gogos JA, Karayiorgou M. Development of animal models for schizophrenia. Dis Model Mech. 2010;3(1-2):22–6. DOI: 10.1242/dmm.003996 38. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148(10):1301–8. DOI: 10.1176/ajp.148.10.1301 39. Meador-Woodruff JH, Healy DJ. Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev. 2000;31(2-3):288–94. DOI: 10.1016/s0165-0173(99)00044-2 40. Meador-Woodruff JH, Clinton SM, Beneyto M, McCullumsmith RE. Molecular abnormalities of the glutamate synapse in the thalamus in schizophrenia. Ann N Y Acad Sci. 2003;1003:75–93. DOI: 10.1196/annals.1300.005 41. Akbarian S, Sucher NJ, Bradley D, et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci. 1996;16(1):19–30. DOI: 10.1523/JNEUROSCI.16-01-00019.1996 42. Yasuda K, Hayashi Y, Yoshida T, et al. Schizophrenia-like phenotypes in mice with NMDA receptor ablation in intralaminar thalamic nucleus cells and gene therapy-based reversal in adults. Transl Psychiatry. 2017;7(2):e1047. DOI: 10.1038/tp.2017.19 43. Singh A, Anjankar VP, Sapkale B. Obsessive-Compulsive Disorder (OCD): A Comprehensive Review of Diagnosis, Comorbidities, and Treatment Approaches. Cureus. 2023;15(11):e48960. DOI: 10.7759/cureus.48960 44. Yang XW, Lu XH. Molecular and cellular basis of obsessive-compulsive disorder-like behaviors: emerging view from mouse models. Curr Opin Neurol. 2011;24(2):114–8. DOI: 10.1097/WCO.0b013e32834451fb 45. Welch JM, Lu J, Rodriguiz RM, et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature. 2007;448(7156):894–900. DOI: 10.1038/nature06104 46. Caccamo A, Maldonado MA, Bokov AF, et al. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2010;107(52):22687–92. DOI: 10.1073/pnas.1012851108 47. Spencer B, Marr RA, Rockenstein E, et al. Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci. 2008;9:109. DOI: 10.1186/1471-2202-9-109 48. Iwata N, Mizukami H, Shirotani K, et al. Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain. J Neurosci. 2004;24(4):991–8. DOI: 10.1523/JNEUROSCI.4792-03.2004 49. Carty NC, Nash K, Lee D, et al. Adeno-associated viral (AAV) serotype 5 vector mediated gene delivery of endothelin-converting enzyme reduces Abeta deposits in APP + PS1 transgenic mice. Mol Ther. 2008;16(9):1580–6. DOI: 10.1038/mt.2008.148
Метрики статей
Metrics powered by PLOS ALM