Роль нарушения механизмов прогностического кодирования в генезе психопатологических состояний при шизофрении

Полный текст:   Только для подписчиков

Рекомендуемое оформление библиографической ссылки:

Рабинович Э.И., Телешева К.Ю. Роль нарушения механизмов прогностического кодирования в генезе психопатологических состояний при шизофрении // Российский психиатрический журнал. 2024. №1. С. 78-86.

Аннотация

В научном обзоре с целью систематизации представлений о связи нарушений механизмов прогностического кодирования с развитием определенных симптомов и психопатологических состояний при шизофрении проведен критический анализ существующих теоретических и эмпирических исследований. Механизмы прогностического кодирования лежат в основе функционирования практически всех психических процессов и объясняют феномены антиципации, которая является одним из важнейших регуляторных механизмов в деятельности человека. Нарушение процесса антиципации может выступать как основное звено в развитии различных психопатологических процессов. Это делает актуальным поиск психофизиологических основ прогностического кодирования для понимания патогенеза патологических состояний и создания подходов к их оценке и коррекции. Результаты проведенного теоретического исследования позволяют проинтерпретировать симптомы шизофрении, основываясь на теории прогностического кодирования, и выявить закономерности в их развитии. В заключении аргументируется обоснованность теории прогностического кодирования как теоретической и методологической основы для изучения патогенетических механизмов при психических заболеваниях.

Ключевые слова предикция; антиципация; шизофрения; галлюцинации; бред; агентность

Литература

1. Kahn RS, Sommer IE, Murray RM, et al. Schizophrenia. Nat Rev Dis Primers. 2015;1:15067. DOI: https://doi.org/10.1038/nrdp.2015.67 2. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60(12):1187–92. DOI: https://doi.org/10.1001/archpsyc.60.12.1187 3. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7. DOI: https://doi.org/10.1038/nature13595 4. Millidge B, Seth A, Buckley CL. Predictive Coding: A Theoretical and Experimental Review. 2022. URL: https://arxiv.org/abs/2107.12979 (accessed on: 07.09.2023). 5. Samylkin DV, Tkachenko AA. [Concepts of the level violation of regulatory processes in schizophrenia: from probabilistic forecasting to predictive coding]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2020;(5); 34–46. (In Russ.) DOI: https://doi.org/10.24411/1560-957Х-2020-10504 6. Rao RP, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2(1):79–87. DOI: https://doi.org/10.1038/4580 7. McClelland JL, Rumelhart DE. An Interactive Activation Model of Context Effects in Letter Perception: I. An Account of Basic Findings. Psychol Rev. 1981;88(5);375–407. DOI: https://doi.org/10.1037/0033-295x.88.5.375 8. Friston K. Hierarchical models in the brain. PLoS Comput Biol. 2008;4(11):e1000211. DOI: https://doi.org/10.1371/journal.pcbi.1000211 9. Falikman MA. [The principle of predictive coding in modern cognitive research]. Voprosy psikhologii. 2021;(3):3–23. (In Russ.) 10. Sterzer P, Voss M, Schlagenhauf F, Heinz A. Decision-making in schizophrenia: A predictive-coding perspective. Neuroimage. 2019;190:133–43. DOI: https://doi.org/10.1016/j.neuroimage.2018.05.074 11. Friston K, Kilner J, Harrison L. A free energy principle for the brain. J Physiol Paris. 2006;100(1–3):70–87. DOI: https://doi.org/10.1016/j.jphysparis.2006.10.001 12. Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci. 2013;36(3):181–204. DOI: https://doi.org/10.1017/S0140525X12000477 13. Adams RA, Stephan KE, Brown HR, et al. The computational anatomy of psychosis. Front Psychiatry. 2013;4:47. DOI: https://doi.org/10.3389/fpsyt.2013.00047 14. Liddle PF, Liddle EB. Imprecise Predictive Coding Is at the Core of Classical Schizophrenia. Front Hum Neurosci. 2022;16:818711. DOI: https://doi.org/10.3389/fnhum.2022.818711 15. Friston K. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci. 2005;360(1456):815–36. DOI: https://doi.org/10.1098/rstb.2005.1622 16. Lavin A, Nogueira L, Lapish CC, et al. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci. 2005;25(20):5013–23. DOI: https://doi.org/10.1523/JNEUROSCI.0557-05.2005 17. Corlett PR, Honey GD, Krystal JH, Fletcher PC. Glutamatergic model psychoses: prediction error, learning, and inference. Neuropsychopharmacology. 2011;36(1):294–315. DOI: https://doi.org/10.1038/npp.2010.163 18. Stephan KE, Baldeweg T, Friston KJ. Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry. 2006;59(10):929–39. DOI: https://doi.org/10.1016/j.biopsych.2005.10.005 19. Harrison PJ, Lewis DA, Kleinman JE. Neuropathology of Schizophrenia. In: Schizophrenia: Third Edition. Weinberger DR, Harrison PJ, editors. Wiley-Blackwell; 2011. p. 372–92. 20. Breier A, Su TP, Saunders R, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A. 1997;94(6):2569–74. DOI: https://doi.org/10.1073/pnas.94.6.2569 21. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull. 2009;35(3):549–62. DOI: https://doi.org/10.1093/schbul/sbp006 22. Stone JM, Erlandsson K, Arstad E, et al. Relationship between ketamine-induced psychotic symptoms and NMDA receptor occupancy: a [(123)I]CNS-1261 SPET study. Psychopharmacology (Berl). 2008;197(3):401–8. DOI: https://doi.org/10.1007/s00213-007-1047-x 23. Kessler RM, Woodward ND, Riccardi P, et al. Dopamine D2 receptor levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects. Biol Psychiatry. 2009;65(12):1024–31. DOI: https://doi.org/10.1016/j.biopsych.2008.12.029 24. Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509–27. DOI: https://doi.org/10.1093/schbul/sbn176 25. Näätänen R, Gaillard AW, Mäntysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. 1978;42(4):313–29. DOI: https://doi.org/10.1016/0301-0511(79)90053-x 26. Martin BA, Tremblay KL, Korczak P. Speech evoked potentials: from the laboratory to the clinic. Ear Hear. 2008;29(3):285–313. DOI: https://doi.org/10.1097/AUD.0b013e3181662c0e 27. Näätänen R. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology. 2001;38(1):1–21. DOI: https://doi.org/10.1017/s0048577201000208 28. Umbricht D, Krljes S. Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res. 2005;76(1):1–23. DOI: https://doi.org/10.1016/j.schres.2004.12.002 29. Todd J, Harms L, Schall U, Michie PT. Mismatch negativity: translating the potential. Front Psychiatry. 2013;4:171. DOI: https://doi.org/10.3389/fpsyt.2013.00171 30. Hauke DJ, Charlton CE, Schmidt A, et al. Aberrant Hierarchical Prediction Errors Are Associated With Transition to Psychosis: A Computational Single-Trial Analysis of the Mismatch Negativity. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8(12):1176–85. DOI: https://doi.org/10.1016/j.bpsc.2023.07.011 31. Fong CY, Law WHC, Uka T, Koike S. Auditory Mismatch Negativity Under Predictive Coding Framework and Its Role in Psychotic Disorders. Front Psychiatry. 2020;11:557932. DOI: https://doi.org/10.3389/fpsyt.2020.557932 32. Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science. 1965;150(3700):1187–8. DOI: https://doi.org/10.1126/science.150.3700.1187 33. Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol. 1992;9(4):456–79. DOI: https://doi.org/10.1097/00004691-199210000-00002 34. Ford JM. Schizophrenia: the broken P300 and beyond. Psychophysiology. 1999;36(6):667–82. PMID: 10554581 35. Chennu S, Noreika V, Gueorguiev D, et al. Expectation and attention in hierarchical auditory prediction. J Neurosci. 2013;33(27):11194–205. DOI: https://doi.org/10.1523/JNEUROSCI.0114-13.2013 36. Walter WG, Cooper R, Aldridge VJ, et al. Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature. 1964;203:380–4. DOI: https://doi.org/10.1038/203380a0 37. Kononowicz TW, Sander T, van Rijn H. Neuroelectromagnetic signatures of the reproduction of supra-second durations. Neuropsychologia. 2015;75:201–13. DOI: https://doi.org/10.1016/j.neuropsychologia.2015.06.001 38. Kononowicz TW, van Rijn H. Decoupling interval timing and climbing neural activity: a dissociation between CNV and N1P2 amplitudes. J Neurosci. 2014;34(8):2931–9. DOI: https://doi.org/10.1523/JNEUROSCI.2523-13.2014 39. Macar F, Vidal F, Casini L. The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp Brain Res. 1999;125(3):271–80. DOI: https://doi.org/10.1007/s002210050683 40. Kononowicz TW, Penney TB. The contingent negative variation (CNV): Timing isn’t everything. Curr Opin Behav Sci. 2016;8:231–7. DOI: https://doi.org/10.1016/j.cobeha.2016.02.022 41. Birbaumer N, Elbert T, Canavan AG, Rockstroh B. Slow potentials of the cerebral cortex and behavior. Physiol Rev. 1990;70(1):1–41. DOI: https://doi.org/10.1152/physrev.1990.70.1.1 42. Brunia CH. Neural aspects of anticipatory behavior. Acta Psychol (Amst). 1999;101(2–3):213–42. DOI: https://doi.org/10.1016/s0001-6918(99)00006-2 43. Bernstein NA. Na putjah k biologii aktivnosti. Voprosy filosofii. 1965;(10):65–78. (In Russ.) 44. Bazylevich TF. Sistemnye issledovanija anticipacii v strukture individual'nosti. Voprosy psikhologii. 1988;(4):46–55. (In Russ.) 45. Bazylevich TF. Integrativnye biojelektricheskie harakteristiki mozga v sistemnoj determinacii strategii povedenija. Psikhologicheskii zhurnal. 1990;11(1):73–83. (In Russ.) 46. Kirenskaya AV, Myamlin VV, Novototsky-Vlasov VY, et al. The contingent negative variation laterality and dynamics in antisaccade task in normal and unmedicated schizophrenic subjects. Span J Psychol. 2011;14(2):869–83. DOI: https://doi.org/10.5209/rev_sjop.2011.v14.n2.34 47. Klein C, Heinks T, Andresen B, et al. Impaired modulation of the saccadic contingent negative variation preceding antisaccades in schizophrenia. Biol Psychiatry. 2000;47(11):978–90. DOI: https://doi.org/10.1016/s0006-3223(00)00234-1 48. Osborne KJ, Kraus B, Lam PH, et al. Contingent Negative Variation Blunting and Psychomotor Dysfunction in Schizophrenia: A Systematic Review. Schizophr Bull. 2020;46(5):1144–54. DOI: https://doi.org/10.1093/schbul/sbaa043 49. Liddle EB, Price D, Palaniyappan L, et al. Abnormal salience signaling in schizophrenia: The role of integrative beta oscillations. Hum Brain Mapp. 2016;37(4):1361–74. DOI: https://doi.org/10.1002/hbm.23107 50. Poliakov YuF. Patologija poznavatel'noj dejatel'nosti pri shizofrenii. Moscow: Medicina; 1974. 168 p. (In Russ.) 51. Feigenberg IM. Narushenie verojatnostnogo prognozirovanija pri shizofrenii. In: Shizofrenija i verojatnostnoe prognozirovanie. VM Morozov, IM Feigenberg, editors. Moscow: COLIUV; 1973. p. 5–19. (In Russ.) 52. Silverstein SM, Keane BP. Perceptual organization impairment in schizophrenia and associated brain mechanisms: review of research from 2005 to 2010. Schizophr Bull. 2011;37(4):690–9. DOI: https://doi.org/10.1093/schbul/sbr052 53. Samylkin DV, Tkachenko AA. [The structure of the abnormal personality as a violation of the temporal perspective]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2021;(3):32–44. (In Russ.) DOI: https://doi.org/10.47877/1560-957Х-2021-10304 54. Ficco L, Mancuso L, Manuello J, et al. Disentangling predictive processing in the brain: a meta-analytic study in favour of a predictive network. Sci Rep. 2021;11(1):16258. DOI: https://doi.org/10.1038/s41598-021-95603-5 55. Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160(1):13–23. DOI: https://doi.org/10.1176/appi.ajp.160.1.13 56. Kilteni K, Andersson BJ, Houborg C, Ehrsson HH. Motor imagery involves predicting the sensory consequences of the imagined movement. Nat Commun. 2018;9(1):1617. DOI: https://doi.org/10.1038/s41467-018-03989-0 57. Corlett PR, Frith CD, Fletcher PC. From drugs to deprivation: a Bayesian framework for understanding models of psychosis. Psychopharmacology (Berl). 2009;206(4):515–30. DOI: https://doi.org/10.1007/s00213-009-1561-0 58. Deane G. Consciousness in active inference: Deep self-models, other minds, and the challenge of psychedelic-induced ego-dissolution. Neurosci Conscious. 2021;2021(2):niab024. DOI: https://doi.org/10.1093/nc/niab024 59. Seth AK, Suzuki K, Critchley HD. An interoceptive predictive coding model of conscious presence. Front Psychol. 2012;2:395. DOI: https://doi.org/10.3389/fpsyg.2011.00395 60. Marshall AC, Gentsch A, Schütz-Bosbach S. The Interaction between Interoceptive and Action States within a Framework of Predictive Coding. Front Psychol. 2018;9:180. DOI: https://doi.org/10.3389/fpsyg.2018.00180 61. Nelson B, Lavoie S, Gawęda Ł, et al. The neurophenomenology of early psychosis: An integrative empirical study. Conscious Cogn. 2020;77:102845. DOI: https://doi.org/10.1016/j.concog.2019.102845

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM