In vitro модели в исследовании терапии болезни Альцгеймера

Полный текст:   Только для подписчиков

Рекомендуемое оформление библиографической ссылки:

Чмелюк Н.С., Вадехина В.В., Иванова А.В., Никитин А.А., Абакумов М.А. In vitro модели в исследовании терапии болезни Альцгеймера // Российский психиатрический журнал. 2023. №6. С. 31-40.

Аннотация

В научном обзоре с целью систематизировать имеющиеся методы в моделировании in vitro болезни Альцгеймера были представлены основные подходы, возможность их применения при тех или иных условиях, а также их основные достоинства и недостатки. Болезнь Альцгеймера – одно из сложнейших заболеваний, поражающее центральную нервную систему. Среди наиболее популярных теорий причин данного заболевания называют амилоидную теорию, обосновывающую дегенерацию нейронов из-за образования β-амилоидных (Aβ) бляшек. В связи с этим на данный момент существует большое количество разработок по поиску препаратов, нацеленных на разрушение агрегатов Aβ, что приводит к попыткам создания наиболее адекватных in vitro моделей заболевания, позволяющих быстро тестировать новые соединения. Это могут быть методы, основанные на способности Aβ агрегировать в водно-солевых буферах и связываться с различными красителями, такими как тиофлавин Т, Congo Red, Nile Red, а также более сложные модели с использованием клеточных линий и культур.

Ключевые слова болезнь Альцгеймера; бета-амилоид; фибриллы; тиофлавин-Т; модель in vitro; центральная нервная система; нейродегенеративные заболевания

Литература

.1. Dementia. World Health Organization. URL: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on: 12.11.2023). 2. Ramos Bernardes da Silva Filho S, Oliveira Barbosa JH, Rondinoni C, et al. Neuro-degeneration profile of Alzheimer’s patients: A brain morphometry study. NeuroImage Clin. 2017;15:15–24. DOI: https://doi.org/10.1016/j.nicl.2017.04.001 3. Hardy JA, Higgins GA. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science. 1992;256(5054):184–5. DOI: https://doi.org/10.1126/science.1566067 4. Se Thoe E, Fauzi A, Tang YQ, et al. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci. 2021;276:119129. DOI: https://doi.org/10.1016/j.lfs.2021.119129 5. Paula V de JR de, Guimarães FM, Diniz BS, Forlenza OV. Neurobiological pathways to Alzheimer’s disease: Amyloid-beta, TAU protein or both? Dement Neuropsychol. 2009;3(3):188–94. DOI: https://doi.org/10.1590/S1980-57642009DN30300003 6. Rajendran L, Annaert W. Membrane Trafficking Pathways in Alzheimer’s Disease. Traffic. 2012;13(6):759–70. DOI: https://doi.org/10.1111/j.1600-0854.2012.01332.x 7. Bernabeu-Zornoza A, Coronel R, Palmer C, et al. Physiological and pathological effects of amyloid-β species in neural stem cell biology. Neural Regen Res. 2019;14(12):2035–42. DOI: https://doi.org/10.4103/1673–5374.262571 8. Chasseigneaux S, Allinquant B. Functions of Aβ, sAPPα and sAPPβ : similarities and differences. J Neurochem. 2012;120(s1):99–108. DOI: https://doi.org/10.1111/j.1471-4159.2011.07584.x 9. Chen Y, Dong C. Aβ40 promotes neuronal cell fate in neural progenitor cells. Cell Death Differ. 2009;16(3):386–94. DOI: https://doi.org/10.1038/cdd.2008.94 10. Heo C, Chang K, Choi HS, et al. Effects of the monomeric, oligomeric, and fibrillar Aβ 42 peptides on the proliferation and differentiation of adult neural stem cells from subventricular zone. J Neurochem. 2007;102(2):493–500. DOI: https://doi.org/10.1111/j.1471-4159.2007.04499.x 11. Fonseca MB, Solá S, Xavier JM, et al. Amyloid β Peptides Promote Autophagy-Dependent Differentiation of Mouse Neural Stem Cells. Mol Neurobiol. 2013;48(3):829–40. DOI: https://doi.org/10.1007/s12035-013-8471-1 12. Itokazu Y, Yu RK. Amyloid β-Peptide 1–42 Modulates the Proliferation of Mouse Neural Stem Cells: Upregulation of Fucosyltransferase IX and Notch Signaling. Mol Neurobiol. 2014;50(1):186–96. DOI: https://doi.org/10.1007/s12035-014-8634-8 13. Bernabeu-Zornoza A, Coronel R, Palmer C, et al. Aβ42 Peptide Promotes Proliferation and Gliogenesis in Human Neural Stem Cells. Mol Neurobiol. 2019;56(6):4023–36. DOI: https://doi.org/10.1007/s12035-018-1355-7 14. Kim J, Onstead L, Randle S, et al. Aβ40 Inhibits Amyloid Deposition In Vivo. J Neurosci. 2007;27(3):627–33. DOI: https://doi.org/10.1523/JNEUROSCI.4849-06.2007 15. Giuffrida ML, Caraci F, Pignataro B, et al. β-Amyloid Monomers Are Neuroprotective. J Neurosci. 2009;29(34):10582–7. DOI: https://doi.org/10.1523/JNEUROSCI.1736-09.2009 16. Chen GF, Xu TH, Yan Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38(9):1205–35. DOI: https://doi.org/10.1038/aps.2017.28 17. Kayed R, Lasagna-Reeves CA. Molecular Mechanisms of Amyloid Oligomers Toxicity. Perry G, Zhu X, Smith MA, Sorensen A, Avila J, eds. J Alzheimer’s Dis. 2013;33(s1):S67–78. DOI: https://doi.org/10.3233/JAD-2012-129001 18. Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Front Cell Neurosci. 2015;9:191. DOI: https://doi.org/10.3389/fncel.2015.00191 19. Lorenzo A, Yuan M, Zhang Z, et al. Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat Neurosci. 2000;3(5):460–4. DOI: https://doi.org/10.1038/74833 20. Malmsten L, Vijayaraghavan S, Hovatta O, et al. Fibrillar β-amyloid 1–42 alters cytokine secretion, cholinergic signalling and neuronal differentiation. J Cell Mol Med. 2014;18(9):1874–88. DOI: https://doi.org/10.1111/jcmm.12343 21. Dahlgren KN, Manelli AM, Stine WB Jr, et al. Oligomeric and Fibrillar Species of Amyloid-β Peptides Differentially Affect Neuronal Viability. J Biol Chem. 2002;277(35):32046–53. DOI: https://doi.org/10.1074/jbc.M201750200 22. Cárdenas-Aguayo M. del C., Silva-Lucero M. del C., Cortes-Ortiz M. et al. Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity. In: Neurochemistry. T. Heinbockel, editor. InTech; 2014. 416 p. DOI: https://doi.org/10.5772/57398 23. Koffie RM, Meyer-Luehmann M, Hashimoto T, et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci. 2009;106(10):4012–7. DOI: https://doi.org/10.1073/pnas.0811698106 24. Benseny-Cases N, Cócera M, Cladera J. Conversion of non-fibrillar β-sheet oligomers into amyloid fibrils in Alzheimer’s disease amyloid peptide aggregation. Biochem Biophys Res Commun. 2007;361(4):916–21. DOI: https://doi.org/10.1016/j.bbrc.2007.07.082 25. Bolognesi B, Cohen SI, Aran Terol P, et al. Single Point Mutations Induce a Switch in the Molecular Mechanism of the Aggregation of the Alzheimer’s Disease Associated Aβ 42 Peptide. ACS Chem Biol. 2014;9(2):378–82. DOI: https://doi.org/10.1021/cb400616y 26. Yakupova EI, Bobyleva LG, Vikhlyantsev IM, Bobylev AG. Congo Red and amyloids: history and relationship. Biosci Rep. 2019;39(1):BSR20181415. DOI: https://doi.org/10.1042/BSR20181415 27. Wu C, Wang Z, Lei H, et al. Dual Binding Modes of Congo Red to Amyloid Protofibril Surface Observed in Molecular Dynamics Simulations. J Am Chem Soc. 2007;129(5):1225–32. DOI: https://doi.org/10.1021/ja0662772 28. Klunk WE, Debnath ML, Pettegrew JW. Development of small molecule probes for the Beta-amyloid protein of Alzheimer’s Disease. Neurobiol Aging. 1994;15(6):691–8. DOI: https://doi.org/10.1016/0197-4580(94)90050-7 29. Xue C, Lin TY, Chang D, Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci. 2017;4(1):160696. DOI: https://doi.org/10.1098/rsos.160696 30. LeVine H. Quantification of β-sheet amyloid fibril structures with thioflavin T. Methods in Enzymology. Elsevier; 1999. Vol. 309. p. 274–84. DOI: https://doi.org/10.1016/S0076-6879(99)09020-5 31. Younan ND, Viles JH. A Comparison of Three Fluorophores for the Detection of Amyloid Fibers and Prefibrillar Oligomeric Assemblies. ThT (Thioflavin T); ANS (1-Anilinonaphthalene-8-sulfonic Acid); and bisANS (4,4′-Dianilino-1,1′-binaphthyl-5,5′-disulfonic Acid). Biochemistry. 2015;54(28):4297–306. DOI: https://doi.org/10.1021/acs.biochem.5b00309 32. Ahn JS, Lee JH, Kim JH, Paik SR. Novel method for quantitative determination of amyloid fibrils of α-synuclein and amyloid β/A4 protein by using resveratrol. Anal Biochem. 2007;367(2):259–65. DOI: https://doi.org/10.1016/j.ab.2007.05.023 33. Kumar R, Nordberg A, Darreh-Shori T. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs. Brain. 2016;139(1):174–92. DOI: https://doi.org/10.1093/brain/awv318 34. Shammas SL, Garcia GA, Kumar S, et al. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers. Nat Commun. 2015;6(1):7025. DOI: https://doi.org/10.1038/ncomms8025 35. Ruifang E, Shi Y, Wang W, Qi M. Callistephin inhibits amyloid-β protein aggregation and determined cytotoxicity against cerebrovascular smooth muscle cells as an in vitro model of cerebral amyloid angiopathy. Arab J Chem. 2022;15(11):103605. DOI: https://doi.org/10.1016/j.arabjc.2021.103605 36. Tahaei Gilan SS, Yahya Rayat D, Ahmed Mustafa TA, et al. α-Synuclein interaction with zero-valent iron nanoparticles accelerates structural rearrangement into amyloid-susceptible structure with increased cytotoxic tendency. Int J Nanomedicine. 2019;14:4637–48. DOI: https://doi.org/10.2147/IJN.S212387 37. Zhang L, Wang Z, Yuan X, et al. Evaluation of heptelidic acid as a potential inhibitor for tau aggregation-induced Alzheimer’s disease and associated neurotoxicity. Int J Biol Macromol. 2021;183:1155–61. DOI: https://doi.org/10.1016/j.ijbiomac.2021.05.018 38. Pinotsi D, Buell AK, Dobson CM, et al. A Label-Free, Quantitative Assay of Amyloid Fibril Growth Based on Intrinsic Fluorescence. ChemBioChem. 2013;14(7):846–50. DOI: https://doi.org/10.1002/cbic.201300103 39. Kaminski Schierle GS, Bertoncini CW, Chan FTS, et al. A FRET Sensor for Non‐Invasive Imaging of Amyloid Formation in Vivo. ChemPhysChem. 2011;12(3):673–80. DOI: https://doi.org/10.1002/cphc.201000996 40. Chan FTS, Kaminski Schierle GS, Kumita JR, et al. Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst. 2013;138(7):2156. DOI: https://doi.org/10.1039/c3an36798c 41. Meng F, Bellaiche MMJ, Kim JY, et al. Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation. Biophys J. 2018;114(4):870–84. DOI: https://doi.org/10.1016/j.bpj.2017.12.025 42. Jankovska N, Olejar T, Matej R. Extracellular Protein Aggregates Colocalization and Neuronal Dystrophy in Comorbid Alzheimer’s and Creutzfeldt–Jakob Disease: A Micromorphological Pilot Study on 20 Brains. Int J Mol Sci. 2021;22(4):2099. DOI: https://doi.org/10.3390/ijms22042099 43. Kocherhans S, Madhusudan A, Doehner J, et al. Reduced Reelin Expression Accelerates Amyloid- Plaque Formation and Tau Pathology in Transgenic Alzheimer’s Disease Mice. J Neurosci. 2010;30(27):9228–40. DOI: https://doi.org/10.1523/JNEUROSCI.0418-10.2010 44. Pahrudin Arrozi A, Shukri SNS, Wan Ngah WZ, et al. Evaluation of the Expression of Amyloid Precursor Protein and the Ratio of Secreted Amyloid Beta 42 to Amyloid Beta 40 in SH-SY5Y Cells Stably Transfected with Wild-Type, Single-Mutant and Double-Mutant Forms of the APP Gene for the Study of Alzheimer’s D. Appl Biochem Biotechnol. 2017;183(3):853–66. DOI: https://doi.org/10.1007/s12010-017-2468-6 45. Yan Y, Gong K, Ma T, et al. Protective effect of edaravone against Alzheimer’s disease-relevant insults in neuroblastoma N2a cells. Neurosci Lett. 2012;531(2):160–5. DOI: https://doi.org/10.1016/j.neulet.2012.10.043 46. Pang Y, Lin W, Zhan L, et al. Inhibiting Autophagy Pathway of PI3K/AKT/mTOR Promotes Apoptosis in SK-N-SH Cell Model of Alzheimer’s Disease. J Healthc Eng. 2022;2022:6069682. DOI: https://doi.org/10.1155/2022/6069682 47. Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533(7601):125–9. DOI: https://doi.org/10.1038/nature17664 48. Lee HK, Velazquez Sanchez C, Chen M, et al. Three Dimensional Human Neuro-Spheroid Model of Alzheimer’s Disease Based on Differentiated Induced Pluripotent Stem Cells. PLoS One. 2016;11(9):e0163072. DOI: https://doi.org/10.1371/journal.pone.0163072 49. Ulaganathan S, Pitchaimani A. Spontaneous and familial models of Alzheimer’s disease: Challenges and advances in preclinical research. Life Sci. 2023;328:121918. DOI: https://doi.org/10.1016/j.lfs.2023.121918 50. Lanoiselée HM, Nicolas G, Wallon D, et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLOS Med. 2017;14(3):e1002270. DOI: https://doi.org/10.1371/journal.pmed.1002270 51. Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci. 2015;18(6):794–9. DOI: https://doi.org/10.1038/nn.4017



DOI: http://dx.doi.org/10.34757/1560-957X.2023.27.6.004

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM