Мозговые механизмы решения когнитивных задач у лиц с биполярным аффективным расстройством при моделировании ситуации морального стресса
Полный текст:
Только для подписчиков
|
Рекомендуемое оформление библиографической ссылки:
Булыгина В.Г., Исангалиева И.М., Вартанов А.В. Мозговые механизмы решения когнитивных задач у лиц с биполярным аффективным расстройством при моделировании ситуации морального стресса // Российский психиатрический журнал. 2024. №1. С. 57-66.
В контролируемом эксперименте с целью определения реакции мозговых структур в связи с ситуативным стрессом проведено исследование процесса решения моральных дилемм и когнитивных задач у лиц с биполярным аффективным расстройством. Обследовано 25 лиц, страдающих биполярным аффективным расстройством. Электроэнцефалографию проводили до и после совершения моральных выборов, используемых как стрессор. Выявлено, что после принятия моральных решений у группы с высоким уровнем стресса наблюдалось увеличение активности в структурах мозга, ответственных за эмоциональную, когнитивную и социальную регуляцию, а также изменение активности в структурах лимбической системы и таламусе, что может оказать влияние на другие системы организма, включая сердечно-сосудистую. У лиц с более низким уровнем стресса отмечалась менее активная реакция на ситуации принятия моральных решений. Полученные результаты подчеркивают важность изучения функционирования мозга у лиц с биполярным аффективным расстройством и специфики нейрональных основ принятии решений в стрессовых ситуациях.
Ключевые слова электроэнцефалография; биполярное аффективное расстройство; стресс; моральный стресс; активность мозга
1. Malkoff-Schwartz S, Frank E, Anderson B, et al. Stressful life events and social rhythm disruption in the onset of manic and depressive bipolar episodes: a preliminary investigation. Arch Gen Psychiatry. 1998;55(8):702–7. DOI: https://doi.org/10.1001/archpsyc.55.8.702 2. Miklowitz DJ, Johnson SL. The psychopathology and treatment of bipolar disorder. Annu Rev Clin Psychol. 2006;2:199–235. DOI: https://doi.org/10.1146/annurev.clinpsy.2.022305.095332 3. Selye H. The stress of life. New York; Toronto; London: McGraw-Hill Book Company, Inc., 1956. 324 р. 4. Burke HM, Davis MC, Otte C, Mohr DC. Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology. 2005;30(9):846–56. DOI: https://doi.org/10.1016/j.psyneuen.2005.02.010 5. Shields GS, Sazma MA, Yonelinas AP. The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neurosci Biobehav Rev. 2016;68:651–68. DOI: https://doi.org/10.1016/j.neubiorev.2016.06.038 6. Etkin A, Prater KE, Schatzberg AF, et al. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry. 2009;66(12):1361–72. DOI: https://doi.org/10.1001/archgenpsychiatry.2009.104 7. Sapolsky RM. Stress and plasticity in the limbic system. Neurochem Res. 2003;28(11):1735–42. DOI: https://doi.org/10.1023/a:1026021307833 8. Morley G, Ives J, Bradbury-Jones C, Irvine F. What is ‘moral distress’? A narrative synthesis of the literature. Nurs Ethics. 2019;26(3):646–62. DOI: https://doi.org/10.1177/0969733017724354 9. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(5):385–96. PMID: 6668417 10. Fuentes-García JP, Pereira T, Castro MA, et al. Psychophysiological stress response of adolescent chess players during problem-solving tasks. Physiol Behav. 2019;209:112609. DOI: https://doi.org/10.1016/j.physbeh.2019.112609 11. Schakel L, Veldhuijzen DS, Crompvoets PI, et al. Effectiveness of stress-reducing interventions on the response to challenges to the immune system: a meta-analytic review. Psychother Psychosom. 2019;88(5):274–86. DOI: https://doi.org/10.1159/000501645 12. Starcke K, Polzer C, Wolf OT, Brand M. Does stress alter everyday moral decision-making? Psychoneuroendocrinology. 2011;36(2):210–9. DOI: https://doi.org/10.1016/j.psyneuen.2010.07.010 13. Moore AB, Clark BA, Kane MJ. Who shalt not kill? Individual differences in working memory capacity, executive control, and moral judgment. Psychol Sci. 2008;19(6):549–57. DOI: https://doi.org/10.1111/j.1467-9280.2008.02122.x 14. Reynolds SJ, Owens BP, Rubenstein AL. Moral stress: Considering the nature and effects of managerial moral uncertainty. J Bus Ethics. 2012;106(4):491–502. DOI: https://doi.org/10.1007/s10551-011-1013-8 15. Lützen K, Blom T, Ewalds-Kvist B, Winch S. Moral stress, moral climate and moral sensitivity among psychiatric professionals. Nurs Ethics. 2010;17(2):213–24. DOI: https://doi.org/10.1177/0969733009351951 16. Greene JD, Sommerville RB, Nystrom LE, et al. An fMRI investigation of emotional engagement in moral judgment. Science. 2001;293(5537):2105–8. DOI: https://doi.org/10.1126/science.1062872 17. Lupien SJ, Maheu F, Tu M, et al. The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain Cogn. 2007;65(3):209–37. DOI: https://doi.org/10.1016/j.bandc.2007.02.007 18. Moll J, de Oliveira-Souza R, Eslinger PJ, et al. The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions. J Neurosci. 2002;22(7):2730–6. DOI: https://doi.org/10.1523/JNEUROSCI.22- 07-02730.2002 19. Vartanov AV. A new method of localizing brain activity using the scalp eeg data. Procedia Comput Sci. 2022;213(6):41–8. DOI: https://doi.org/10.1016/j.procs.2022.11.036 20. Vartanov AV. Novyi podkhod k prostranstvennoi lokalizatsii elektricheskoi aktivnosti po dannym EEG. Epilepsiya i paroksizmal'nye sostoyaniya. 2023;15(4):326–38. (In Russ.) DOI: https://doi.org/10.17749/2077-8333/epi.par.con.2023.177 21. McEwen BS. Brain on stress: how the social environment gets under the skin. Proc Nat Acad Sci U S A. 2012;109(Suppl 2):17180–5. DOI: https://doi.org/10.1073/pnas.1121254109 22. McEwen BS, Morrison JH. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron. 2013;79(1):16–29. DOI: https://doi.org/10.1016/j.neuron.2013.06.028 23. McEwen BS, Nasca C, Gray JD. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41(1):3–23. DOI: https://doi.org/10.1038/npp.2015.171 24. Arnsten AFT. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410–22. DOI: https://doi.org/10.1038/nrn2648 25. Goldman-Rakic PS. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci. 1996;351(1346):1445–53. DOI: https://doi.org/10.1098/rstb.1996.0129 26. Jensen AR. How much can we boost IQ and scholastic achievement? Harvard Educational Review. 1969;39(1):1–123. DOI: https://doi.org/10.17763/HAER.39.1.L3U15956627424K7 27. Turner AI, Smyth N, Hall SJ, et al. Psychological stress reactivity and future health and disease outcomes: A systematic review of prospective evidence. Psychoneuroendocrinology. 2020;114:104599. DOI: https://doi.org/10.1016/j.psyneuen.2020.104599 28. Venkatraman V, Rosati AG, Taren AA, Huettel SA. Resolving response, decision, and strategic control: evidence for a functional topography in dorsomedial prefrontal cortex. J Neurosci. 2009;29(42):13158–64. DOI: https://doi.org/10.1523/JNEUROSCI.2708-09.2009 29. Ramezanpour H, Fallah M. The role of temporal cortex in the control of attention. Curr Res Neurobiol. 2022;3:100038. DOI: https://doi.org/10.1016/j.crneur.2022.100038 30. Deppe M, Schwindt W, Kugel H, et al. Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making. J Neuroimaging. 2005;15(2):171–82. DOI: https://doi.org/10.1177/1051228405275074 31. Decety J, Jackson PL. The functional architecture of human empathy. Behav Cogn Neurosci Rev. 2004;3(2):71–100. DOI: https://doi.org/10.1177/1534582304267187 32. Aharoni E, Vincent GM, Harenski CL, et al. Neuroprediction of future rearrest. Proc Nat Acad Sci U S A. 2013;110(15):6223–8. DOI: https://doi.org/10.1073/pnas.1219302110 33. Phan KL, Wager T, Taylor SF, Liberzon I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage. 2002;16(2):331–48. DOI: https://doi.org/10.1006/nimg.2002.1087 34. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol. 2005;5(3):243–51. DOI: https://doi.org/10.1038/nri1571 35. Lamb K, Gallagher K, McColl R, et al. Exercise-induced decrease in insular cortex rCBF during postexercise hypotension. Med Sci Sports Exerc. 2007;39(4):672–9. DOI: https://doi.org/10.1249/mss.0b013e31802f04e0 36. Baliki MN, Geha PY, Apkarian AV. Parsing pain perception between nociceptive representation and magnitude estimation. J Neurophysiol. 2009;101(2):875–87. DOI: https://doi.org/10.1152/jn.91100.2008 37. Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34(2):163–71. DOI: https://doi.org/10.1016/j.psyneuen.2008.10.026 38. Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implicatons for therapy. J Affect Disord. 2001;62(1–2):77–91. DOI: https://doi.org/10.1016/s0165-0327(00)00352-9 39. Schoofs D, Pabst S, Brand M, Wolf OT. Working memory is differentially affected by stress in men and women. Behav Brain Res. 2013;241:144–53. DOI: https://doi.org/10.1016/j.bbr.2012.12.004 40. Steriade M, Llinás RR. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988;68(3):649–742. DOI: https://doi.org/10.1152/physrev.1988.68.3.649 41. Stein T, Moritz C, Quigley M, et al. Functional connectivity in the thalamus and hippocampus studied with functional MR imaging. AJNR Am J Neuroradiol. 2000;21(8):1397–401. PMID: 11003270
Метрики статей
Metrics powered by PLOS ALM