Генно-клеточная терапия – инновационная стратегия лечения заболеваний центральной нервной системы

Полный текст:
Читать

Рекомендуемое оформление библиографической ссылки:

Фурса Г.А., Андрецова С.С., Воронова А.Д., Карсунцева Е.К., Шишкина В.С., Чадин А.В., Решетов И.В., Шпорт С.В., Степанова О.В., Чехонин В.П. Генно-клеточная терапия – инновационная стратегия лечения заболеваний центральной нервной системы // Российский психиатрический журнал. 2024. №3. С. 55-66.

Аннотация

В научном обзоре с целью обобщения современного состояния экспериментальной терапии заболеваний центральной нервной системы рассматривается применение такого инновационного подхода, как генно-клеточная терапия. В многочисленных экспериментальных работах и ряде клинических исследований по применению различных типов клеток при травматических повреждениях головного и спинного мозга, а также при нейродегенеративных заболеваниях были получены положительные результаты. Клеточная трансплантация может способствовать регенерации поврежденной нервной ткани, активируя рост и миелинизацию аксонов, а также восстановлению моторных, сенсорных и когнитивных функций. Наиболее перспективными являются обкладочные клетки, полученные из обонятельной выстилки носа, и генно-клеточные препараты на основе трансдуцированных клеток, экспрессирующих нейротрофические факторы. Исследования вирусных векторов, кодирующих нейротрофические факторы, и способов усиления эффективности трансдукции открывают новые возможности для терапии нейродегенеративных и посттравматических заболеваний центральной нервной системы.

Ключевые слова клеточная терапия; центральная нервная система; нейродегенеративные заболевания; повреждения спинного мозга; повреждения головного мозга; генно-клеточная терапия; обкладочные клетки

Литература

1. Allan SM, Rothwell NJ. Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci. 2003;358(1438):1669–77. DOI: http://doi.org/10.1098/rstb.2003.1358 2. Sivandzade F, Cucullo L. Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview. Int J Mol Sci. 2021;22(4):2153. DOI: https://doi.org/10.3390/ijms22042153 3. Agnello L, Ciaccio M. Neurodegenerative Diseases: From Molecular Basis to Therapy. Int J Mol Sci. 2022;23(21):12854. DOI: https://doi.org/10.3390/ijms232112854 4. GBD 2017 US Neurological Disorders Collaborators; Feigin VL, et al. Burden of Neurological Disorders Across the US From 1990–2017: A Global Burden of Disease Study. JAMA Neurol. 2021;78(2):165–76. DOI: https://doi.org/10.1001/jamaneurol.2020.4152 5. Craig A, Tran Y, Middleton J. Psychological morbidity and spinal cord injury: a systematic review. Spinal Cord. 2009;47(2):108–14. DOI: https://doi.org/10.1038/sc.2008.115 6. Krause JS, Cao Y, DiPiro N. Psychological factors and risk of mortality after spinal cord injury. J Spinal Cord Med. 2020;43(5):667–75. DOI: https://doi.org/10.1080/10790268.2019.1690766 7. Scholten EWM, Ketelaar M, Visser-Meily JMA, et al. Prediction of Psychological Distress Among Persons With Spinal Cord Injury or Acquired Brain Injury and Their Significant Others. Arch Phys Med Rehabil. 2020;101(12):2093–102. DOI: https://doi.org/10.1016/j.apmr.2020.05.023 8. Kormas P, Moutzouri A. Current Psychological Approaches in Neurodegenerative Diseases. Handbook of Computational Neurodegeneration. P Vlamos, IS Kotsireas, I Tarnanas, editors. Cham: Springer International Publishing; 2020. р. 261–89. DOI: https://doi.org/10.1007/978-3-319-75922-7_10 9. Ovaska-Stafford N, Maltby J, Dale M. Literature Review: Psychological Resilience Factors in People with Neurodegenerative Diseases. Arch Clin Neuropsychol. 2021;36(2):283–306. DOI: https://doi.org/10.1093/arclin/acz063 10. Manwell LA, Tadros M, Ciccarelli TM, Eikelboom R. Digital dementia in the internet generation: excessive screen time during brain development will increase the risk of Alzheimer’s disease and related dementias in adulthood. J Integr Neurosci. 2022;21(1):28. DOI: https://doi.org/10.31083/j.jin2101028 11. Mehanna R, Jankovic J. Young-onset Parkinson’s disease: Its unique features and their impact on quality of life. Parkinsonism Relat Disord. 2019;65:39–48. DOI: https://doi.org/10.1016/j.parkreldis.2019.06.001 12. Li X, Sundström E. Stem Cell Therapies for Central Nervous System Trauma: The 4 Ws – What, When, Where, and Why. Stem Cells Transl Med. 2022;11(1):14–25. DOI: https://doi.org/10.1093/stcltm/szab006 13. Sakthiswary R, Raymond AA. Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regen Res. 2012;7(23):1822–31. DOI: https://doi.org/10.3969/j.issn.1673-5374.2012.23.009 14. Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primer. 2017;3(1):17018. DOI: https://doi.org/10.1038/nrdp.2017.18 15. McAllister TW. Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci. 2011;13(3):287–300. DOI: https://doi.org/10.31887/DCNS.2011.13.2/tmcallister 16. Adams KL, Gallo V. The diversity and disparity of the glial scar. Nat Neurosci. 2018;21(1):9–15. DOI: https://doi.org/10.1038/s41593-017-0033-9 17. Fischer T, Stern C, Freund P, et al. Wallerian degeneration in cervical spinal cord tracts is commonly seen in routine T2-weighted MRI after traumatic spinal cord injury and is associated with impairment in a retrospective study. Eur Radiol. 2021;31(5):2923–32. DOI: https://doi.org/10.1007/s00330-020-07388-2 18. Koliatsos VE, Alexandris AS. Wallerian degeneration as a therapeutic target in traumatic brain injury. Curr Opin Neurol. 2019;32(6):786–95. DOI: https://doi.org/10.1097/WCO.0000000000000763 19. Greenhalgh AD, David S. Differences in the Phagocytic Response of Microglia and Peripheral Macrophages after Spinal Cord Injury and Its Effects on Cell Death. J Neurosci. 2014;34(18):6316–22. DOI: https://doi.org/10.1523/JNEUROSCI.4912-13.2014 20. Buss A. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain. 2004;127(1):34–44. DOI: https://doi.org/10.1093/brain/awh001 21. Wu J, Zhao Z, Sabirzhanov B, et al. Spinal Cord Injury Causes Brain Inflammation Associated with Cognitive and Affective Changes: Role of Cell Cycle Pathways. J Neurosci. 2014;34(33):10989–1006. DOI: https://doi.org/10.1523/JNEUROSCI.5110-13.2014 22. El Sayed T, Mota A, Fraternali F, Ortiz M. Biomechanics of traumatic brain injury. Comput Methods Appl Mech Eng. 2008;197(51–52):4692–701. DOI: https://doi.org/10.1016/J.CMA.2008.06.006 23. Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: Clues to axon and myelin repair capacity. Exp Neurol. 2016;275(3):328–33. DOI: https://doi.org/10.1016/j.expneurol.2015.02.011 24. Vieira RDCA, Paiva WS, de Oliveira DV, et al. Diffuse Axonal Injury: Epidemiology, Outcome and Associated Risk Factors. Front Neurol. 2016;7:178. DOI: https://doi.org/10.3389/fneur.2016.00178 25. Page KM, Stenger EO, Connelly JA, et al. Hematopoietic Stem Cell Transplantation to Treat Leukodystrophies: Clinical Practice Guidelines from the Hunter’s Hope Leukodystrophy Care Network. Biol Blood Marrow Transplant. 2019;25(12):e363–74. DOI: https://doi.org/10.1016/j.bbmt.2019.09.003 26. Casas BS, Vitória G, do Costa MN, et al. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Transl Psychiatry. 2018;8(1):48. DOI: https://doi.org/10.1038/s41398-018-0095-9 27. Buddhala C, Loftin SK, Kuley BM, et al. Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Ann Clin Transl Neurol. 2015;2(10):949–59. DOI: https://doi.org/10.1002/acn3.246 28. Conner L, Srinageshwar B, Bakke JL, et al. Advances in stem cell and other therapies for Huntington’s disease: An update. Brain Res Bull. 2023;199:110673. DOI: https://doi.org/10.1016/j.brainresbull.2023.110673 29. Morata-Tarifa C, Azkona G, Glass J, et al. Looking backward to move forward: a meta-analysis of stem cell therapy in amyotrophic lateral sclerosis. NPJ Regen Med. 2021;6(1):20. DOI: https://doi.org/10.1038/s41536-021-00131-5 30. Chen X, Jiang S, Wang R, et al. Neural Stem Cells in the Treatment of Alzheimer’s Disease: Current Status, Challenges, and Future Prospects. J Alzheimers Dis. 2023;94(s1):S173–86. DOI: https://doi.org/10.3233/JAD-220721 31. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7(2):e105–25. DOI: https://doi.org/10.1016/S2468-2667(21)00249-8 32. Ying C, Zhang J, Zhang H, et al. Stem cells in central nervous system diseases: Promising therapeutic strategies. Exp Neurol. 2023;369:114543. DOI: https://doi.org/10.1016/j.expneurol.2023.114543 33. Qin C, Wang K, Zhang L, Bai L. Stem cell therapy for Alzheimer’s disease: An overview of experimental models and reality. Animal Model Exp Med. 2022;5(1):15–26. DOI: https://doi.org/10.1002/ame2.12207 34. Prasad EM, Hung S-Y. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson’s Disease. Antioxidants. 2020;9(10):1007. DOI: https://doi.org/10.3390/antiox9101007 35. Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int. 2017;106;94–100. DOI: https://doi.org/10.1016/j.neuint.2017.02.006 36. Bugos O, Bhide M, Zilka N. Beyond the Rat Models of Human Neurodegenerative Disorders. Cell Mol Neurobiol. 2009;29(6–7):859–69. DOI: https://doi.org/10.1007/s10571-009-9367-5 37. Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci. 2018;21(10):1370–9. DOI: https://doi.org/10.1038/s41593-018-0236-8 38. Emborg ME. Nonhuman Primate Models of Neurodegenerative Disorders. ILAR J. 2017;58(2):190–201. DOI: https://doi.org/10.1093/ilar/ilx021 39. Pan M-T, Zhang H, Li XJ, Guo XY. Genetically modified non-human primate models for research on neurodegenerative diseases. Zool Res. 2024;45(2):263–74. DOI: https://doi.org/10.24272/j.issn.2095-8137.2023.197 40. Yang D, Zhang ZJ, Oldenburg M, et al. Human Embryonic Stem Cell-Derived Dopaminergic Neurons Reverse Functional Deficit in Parkinsonian Rats. Stem Cells. 2008;26(1):55–63. DOI: https://doi.org/10.1634/stemcells.2007-0494 41. McGinley LM, Kashlan ON, Bruno ES, et al. Human neural stem cell transplantation improves cognition in a murine model of Alzheimer’s disease. Sci Rep. 2018;8(1):14776. DOI: https://doi.org/10.1038/s41598-018-33017-6 42. Liang X-S, Sun Z-W, Thomas AM, Li S. Mesenchymal Stem Cell Therapy for Huntington Disease: A Meta-Analysis. Stem Cells Int. 2023;2023:1109967. DOI: https://doi.org/10.1155/2023/1109967 43. Minkelyte K, Li D, Li Y, Ibrahim A. High-Yield Mucosal Olfactory Ensheathing Cells Restore Loss of Function in Rat Dorsal Root Injury. Cells. 2021;10(5):1186. DOI: https://doi.org/10.3390/cells10051186 44. Andrews PJ, Poirrier AL, Lund VJ, Choi D. Safety of human olfactory mucosal biopsy for the purpose of olfactory ensheathing cell harvest and nerve repair: a prospective controlled study in patients undergoing endoscopic sinus surgery. Rhinology. 2016;54(2):183–91. DOI: https://doi.org/10.4193/Rhino15.365 45. Tabakow P, Jarmundowicz W, Czapiga B, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013;22(9):1591–612. DOI: https://doi.org/10.3727/096368912X663532 46. Denaro S, D'Aprile S, Alberghina C, et al. Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for neuroprotection and regeneration. Front Immunol. 2022;13:1098212. DOI: https://doi.org/10.3389/fimmu.2022.1098212 47. Zhang L, Liao JX, Liu YY, et al. Potential therapeutic effect of olfactory ensheathing cells in neurological diseases: neurodegenerative diseases and peripheral nerve injuries. Front Immunol. 2023;14:1280186. DOI: https://doi.org/10.3389/fimmu.2023.1280186 48. Agrawal AK, Shukla S, Chaturvedi RK, et al. Olfactory ensheathing cell transplantation restores functional deficits in rat model of Parkinson’s disease: a cotransplantation approach with fetal ventral mesencephalic cells. Neurobiol Dis. 2004;16(3):516–26. DOI: https://doi.org/10.1016/j.nbd.2004.04.014 49. Yu A, Mao L, Zhao F, Sun B. Olfactory ensheathing cells transplantation attenuates chronic cerebral hypoperfusion induced cognitive dysfunction and brain damages by activating Nrf2/HO-1 signaling pathway. Am J Transl Res. 2018;10(10):3111–21. PMID: 30416654 50. Nakhjavan-Shahraki B, Yousefifard M, Rahimi-Movaghar V, et al. Transplantation of olfactory ensheathing cells on functional recovery and neuropathic pain after spinal cord injury; systematic review and meta-analysis. Sci Rep. 2018;8(1):325. DOI: https://doi.org/10.1038/s41598-017-18754-4 51. Stepanova OV, Voronova AD, Chadin AV, et al. Neurotrophin-3 Enhances the Effectiveness of Cell Therapy in Chronic Spinal Cord Injuries. Bull Exp Biol Med. 2022;173(1):114–8. DOI: https://doi.org/10.1007/s10517-022-05504-4 52. Voronova AD, Stepanova OV, Valikhov MP, et al. Combined Preparation of Human Olfactory Ensheathing Cells in the Therapy of Post-Traumatic Cysts of the Spinal Cord. Bull Exp Biol Med. 2020;169(4):539–43. DOI: https://doi.org/10.1007/s10517-020-04925-3 53. Hwang J-Y, Won J-S, Nam H, et al. Current advances in combining stem cell and gene therapy for neurodegenerative diseases. Precis Future Med. 2018;2(2):53–65. DOI: https://doi.org/10.23838/pfm.2018.00037 54. Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B. 2020;10(8):1347–59. DOI: https://doi.org/10.1016/j.apsb.2020.01.015 55. Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. Lancet. 2022;400(10360):1363–80. DOI: https://doi.org/10.1016/S0140-6736(22)01272-7 56. Henderson CE. Role of neurotrophic factors in neuronal development. Curr Opin Neurobiol. 1996;6(1):64–70. DOI: https://doi.org/10.1016/s0959-4388(96)80010-9 57. Ciammola A, Sassone J, Cannella M, et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(4):574–7. DOI: https://doi.org/10.1002/ajmg.b.30501 58. Pollock K, Dahlenburg H, Nelson H, et al. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington’s Disease Mouse Models. Mol Ther. 2016;24(5):965–77. DOI: https://doi.org/10.1038/mt.2016.12 59. Li H, Yin Z, Yue S, et al. Effect of valproic acid combined with transplantation of olfactory ensheathing cells modified by neurotrophic 3 gene on nerve protection and repair after traumatic brain injury. Neuropeptides. 2024;103:102389. DOI: https://doi.org/10.1016/j.npep.2023.102389 60. Prager J, Ito D, Carwardine DR, et al. Delivery of chondroitinase by canine mucosal olfactory ensheathing cells alongside rehabilitation enhances recovery after spinal cord injury. Exp Neurol. 2021;340:113660. DOI: https://doi.org/10.1016/j.expneurol.2021.113660 61. Stepanova OV, Voronova AD, Sosnovtseva AO, et al. Study of the Therapeutic Efficiency of Transduced Olfactory Ensheathing Cells in Spinal Cord Cysts. Stem Cells Dev. 2022;31(1–2):9–17. DOI: https://doi.org/10.1089/scd.2021.0265 62. Liu Q, Qin Q, Sun H, et al. Neuroprotective effect of olfactory ensheathing cells co-transfected with Nurr1 and Ngn2 in both in vitro and in vivo models of Parkinson’s disease. Life Sci. 2018;194:168–76. DOI: https://doi.org/10.1016/j.lfs.2017.12.038 63. Guo X, Wang Y, Liu Y, et al. A pilot study of clinical cell therapies in Alzheimer’s disease. J Neurorestoratology. 2021;9(4):269–84. DOI: https://doi.org/10.26599/JNR.2021.9040023 64. Yasuhara T, Kawauchi S, Kin K, et al. Cell therapy for central nervous system disorders: Current obstacles to progress. CNS Neurosci Ther. 2020;26(6):595–602. DOI: https://doi.org/10.1111/cns.13247

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM