Корреляция уровней экспрессии генов BDNF и OXTR в головном мозге с показателями тревожного и депрессивно-подобного поведения у крыс с опытом ультразвукового пренатального стресса
Полный текст:
Только для подписчиков
|
Рекомендуемое оформление библиографической ссылки:
Абрамова О.В., Ушакова В.М., Морозова А.Ю., Зоркина Я.А., Зубков Е.А., Павлов К.А., Очнева А.Г., Павлова О.В., Сторожева З.И., Гурина О.И., Шпорт С.В., Чехонин В.П. Корреляция уровней экспрессии генов BDNF и OXTR в головном мозге с показателями тревожного и депрессивно-подобного поведения у крыс с опытом ультразвукового пренатального стресса // Российский психиатрический журнал. 2024. №4. С. 23-35.
В контролируемом эксперименте с целью оценить влияние ультразвукового пренатального стресса на экспрессию генов BDNF и OXTR в головном мозге крыс линии Sprague Dawley на беременных самок непрерывно воздействовали ультразвуком переменной частоты в течение всего гестационного периода. Потомство самок во взрослом возрасте тестировали в поведенческих тестах: тесте на ангедонию, тесте «Открытое поле», тесте «Приподнятый крестообразный лабиринт». В образцах головного мозга потомства из разных отделов (гиппокамп, гипоталамус и средний мозг) оценивали уровень экспрессии генов BDNF и OXTR методом полимеразной цепной реакции в реальном времени. Потомство крыс с опытом пренатального стресса характеризовалось измененным поведенческим фенотипом – усиленным тревожным и исследовательским поведением. Экспрессия генов BDNF и OXTR не изменилась, однако были обнаружены некоторые корреляционные взаимосвязи между экспрессией и поведением.
Ключевые слова пренатальный стресс; ультразвуковое воздействие; BDNF; OXTR; экспрессия генов; поведение крыс; головной мозг
1. Krontira A, Cruceanu CC, Binder EB. Glucocorticoids as Mediators of Adverse Outcomes of Prenatal Stress. Trends Neurosci. 2020;43(6):394–405. DOI: 10.1016/j.tins.2020.03.008 2. Miguel PM, Pereira LO, Silveira PP, Meaney MJ. Early environmental influences on the development of children’s brain structure and function. Dev Med Child Neurol. 2019;61(10):1127–33. DOI: 10.1111/dmcn.14182 3. Stiles J. Principles of brain development. Wiley Interdiscip Rev Cogn Sci. 2017;8(1–2):10.1002/wcs. DOI: 10.1002/wcs.1402 4. Haq SU, Bhat UA, Kumar A. Prenatal stress effects on offspring brain and behavior: Mediators, alterations and dysregulated epigenetic mechanisms. J Biosci. 2021;46:34. PMID: 33859069 5. Roshan-Milani S, Seyyedabadi B, Saboory E, et al. Prenatal stress and increased susceptibility to anxiety-like behaviors: role of neuroinflammation and balance between GABAergic and glutamatergic transmission. Stress. 2021;24(5):481–95. DOI: 10.1080/10253890.2021.1942828 6. Howes OD, McCutcheon R, Owen MJ, Murray RM. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol Psychiatry. 2017;81(1):9–20. DOI: 10.1016/j.biopsych.2016.07.014 7. Levy MJF, Boulle F, Steinbusch HW, et al. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology. 2018;235(8):2195–20. DOI: 10.1007/s00213-018-4950-4 8. Malamitsi-Puchner A, Nikolaou KE, Puchner KP. Intrauterine Growth Restriction, Brain-Sparing Effect, and Neurotrophins. Ann N Y Acad Sci. 2006;1092(1):293–6. DOI: 10.1196/annals.1365.026 9. Pallarés ME, Antonelli MC. Prenatal Stress and Neurodevelopmental Plasticity: Relevance to Psychopathology. Adv Exp Med Biol. 2017;1015:117–29. DOI: 10.1007/978-3-319-62817-2_7 10. Ghassabian A, Sundaram R, Chahal N, et al. Determinants of neonatal brain-derived neurotrophic factor and association with child development. Dev Psychopathol. 2017;29(4):1499–511. DOI: 10.1017/S0954579417000414 11. Lu B, Nagappan G, Lu Y. BDNF and Synaptic Plasticity, Cognitive Function, and Dysfunction. Handb Exp Pharmacol. 2014;220:223–50. DOI: 10.1007/978-3-642-45106-5_9 12. Autry AE, Monteggia LM. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacol Rev. 2012;64(2):238–58. DOI: 10.1124/pr.111.005108 13. Badihian N, Daniali SS, Kelishadi R. Transcriptional and epigenetic changes of brain derived neurotrophic factor following prenatal stress: A systematic review of animal studies. Neurosci Biobehav Rev. 2020;117:211–31. DOI: 10.1016/j.neubiorev.2019.12.018 14. Kormos V, Gaszner B. Role of neuropeptides in anxiety, stress, and depression: From animals to humans. Neuropeptides. 2013;47(6):401–19. DOI: 10.1016/j.npep.2013.10.014 15. Yeo XY, Cunliffe G, Ho RC, et al. Potentials of Neuropeptides as Therapeutic Agents for Neurological Diseases. Biomedicines. 2022;10(2):343. DOI: 10.3390/biomedicines10020343 16. Sánchez-Vidaña DI, Chan N-MJ, Chan AHL, et al. Repeated treatment with oxytocin promotes hippocampal cell proliferation, dendritic maturation and affects socio-emotional behavior. Neuroscience. 2016;333:65–77. DOI: 10.1016/j.neuroscience.2016.07.005 17. Bakos J, Srancikova A, Havranek T, Bacova Z. Molecular Mechanisms of Oxytocin Signaling at the Synaptic Connection. Neural Plast. 2018;2018:4864107. DOI: 10.1155/2018/4864107 18. Pekarek BT, Hunt PJ, Arenkiel BR. Oxytocin and Sensory Network Plasticity. Front Neuroscie. 2020;14:30. DOI: 10.3389/fnins.2020.00030 19. Jones C, Barrera I, Brothers S, et al. Oxytocin and social functioning. Dialogues Clin Neurosci. 2017;19(2):193–201. DOI: 10.31887/DCNS.2017.19.2/cjones 20. Matsuzaki M, Matsushita H, Tomizawa K, Matsui H. Oxytocin: a therapeutic target for mental disorders. J Physiol Sci. 2012;62(6):441–4. DOI: 10.1007/s12576-012-0232-9 21. Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol. 2010;90(3):285–326. DOI: 10.1016/j.pneurobio.2009.10.018 22. Takahashi N, Kashino M, Hironaka N. Structure of rat ultrasonic vocalizations and its relevance to behavior. PloS One. 2010;5(11):e14115. DOI: 10.1371/journal.pone.0014115 23. Morozova AY, Zubkov EA, Storozheva ZI, et al. Effect of ultrasonic irradiation on the development of symptoms of depression and anxiety in rats. Bull Exp Biol Med. 2013;154(6):740–3. DOI: 10.1007/s10517-013-2044-1 24. Morozova AYu, Zubkov EA, Koshkin FA, et al. Expression of Genes Encoding Serotonin Receptors and SERT in Various Brain Structures of Stressed Rats after Chronic Exposure to Ultrasound. Bul Exp Biol Med. 2014;156(3):317–9. DOI: 10.1007/s10517-014-2338-y 25. Morozova A, Zubkov E, Strekalova T, et al. Ultrasound of alternating frequencies and variable emotional impact evokes depressive syndrome in mice and rats. Prog Neuropsychopharmacol Biol Psychiatry. 2016;68:52–63. DOI: 10.1016/j.pnpbp.2016.03.003 26. Zorkina YA, Zubkov EA, Morozova AY, et al. The comparison of a new ultrasound-induced depression model to the chronic mild stress paradigm. Front Behav Neurosci. 2019;13:146. DOI: 10.3389/fnbeh.2019.00146 27. Abramova O, Zorkina Y, Syunyakov T, et al. Brain Metabolic Profile after Intranasal vs. Intraperitoneal Clomipramine Treatment in Rats with Ultrasound Model of Depression. Int J Mol Sci. 2021;22(17):9598. DOI: 10.3390/ijms22179598 28. Abramova O, Morozova A, Zubkov E, et al. Ultrasound-Induced Prenatal Stress: New Possibilities for Modeling Mental Disorders. Dev Neurosci. 2024;46(4):237–61. DOI: 10.1159/000534687 29. Abramova O, Ushakova V, Zorkina Y, et al. The Behavior and Postnatal Development in Infant and Juvenile Rats After Ultrasound-Induced Chronic Prenatal Stress. Front Physiol. 2021;12:659366. DOI: 10.3389/fphys.2021.659366 30. Abramova OV, Zubkov EA, Zorkina YA, et al. Social and Cognitive Impairments in Rat Offspring after Ultrasound-Induced Prenatal Stress. Bull Exp Biol Med. 2020;168(6):730–3. DOI: 10.1007/s10517-020-04790-0 31. Abramova OV, Zorkina YaA, Ushakova VM, et al. Kontsentratsii BDNF i neiropeptidov v krovi kak potentsial'nye biomarkery povedencheskikh narushenii u krys s opytom ul'trazvukovogo prenatal'nogo stressa. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2023;(4):18–30. (In Russ.) 32. Abramova O, Zorkina Y, Pavlov K, et al. Chronic Ultrasound Prenatal Stress Altered the Brain’s Neurochemical Systems in Newborn Rats. Neural Plast. 2024;2024:3829941. DOI: 10.1155/2024/3829941 33. Knight P, Chellian R, Wilson R, et al. Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol Biochem Behav. 2021;204:173168. DOI: 10.1016/j.pbb.2021.173168 34. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods. 2001;25(4):402–8. DOI: 10.1006/meth.2001.1262 35. Enayati M, Mosaferi B, Homberg JR, et al. Prenatal maternal stress alters depression-related symptoms in a strain – and sex-dependent manner in rodent offspring. Life Sci. 2020;251:117597. DOI: 10.1016/j.lfs.2020.117597 36. Berry A, Mazzelli M, Musillo C, et al. High-fat diet during adulthood interacts with prenatal stress, affecting both brain inflammatory and neuroendocrine markers in male rats. Eur J Neurosci. 2022;55(9–10):2326–40. DOI: 10.1111/ejn.15181 37. Kubo K, Kotachi M, Suzuki A, et al. Chewing during prenatal stress prevents prenatal stress-induced suppression of neurogenesis, anxiety-like behavior and learning deficits in mouse offspring. Int J Med Sci. 2018;15(9):849–58. DOI: 10.7150/ijms.25281 38. Lian S, XuB, Wang D, et al. Possible mechanisms of prenatal cold stress induced-anxiety-like behavior depression in offspring rats. Behav Brain Res. 2019;359:304–11. DOI: 10.1016/j.bbr.2018.11.008 39. Neeley EW, Berger R, Koenig JI, Leonard S. Prenatal stress differentially alters brain-derived neurotrophic factor expression and signaling across rat strains. Neuroscience. 2011;187:24–35. DOI: 10.1016/j.neuroscience.2011.03.065 40. Amani M, Houwing DJ, Homberg JR, Salari A-A. Perinatal fluoxetine dose-dependently affects prenatal stress-induced neurobehavioural abnormalities, HPA-axis functioning and underlying brain alterations in rat dams and their offspring. Reprod Toxicol. 2021;104:27–43. DOI: 10.1016/j.reprotox.2021.06.014 41. Zhang X, Li H, Sun H, et al. Effects of BDNF Signaling on Anxiety-Related Behavior and Spatial Memory of Adolescent Rats in Different Length of Maternal Separation. Front Psychiatry. 2020;11:709. DOI: 10.3389/fpsyt.2020.00709 42. Chan CB, Ye K. Sex differences in brain-derived neurotrophic factor signaling and functions. J Neurosci Res. 2017;95(1–2):328–35. DOI: 10.1002/jnr.23863 43. Kight KE, McCarthy MM. Sex differences and estrogen regulation of BDNF gene expression, but not propeptide content, in the developing hippocampus. J Neurosci Res. 2017;95(1–2):345–54. DOI: 10.1002/jnr.23920 44. Monteggia LM, LuikartB, Barrot M, et al. Brain-Derived Neurotrophic Factor Conditional Knockouts Show Gender Differences in Depression-Related Behaviors. Biol Psychiatry. 2007;61(2):187–97. DOI: 10.1016/j.biopsych.2006.03.021 45. Ma Y, Zhao W, Chen D, et al. Disinhibition of Mesolimbic Dopamine Circuit by the Lateral Hypothalamus Regulates Pain Sensation. J Neurosci. 2023;43(24):4525–40. DOI: 10.1523/JNEUROSCI.2298-22.2023 46. Schmidt M, Braun K, Brandwein C, et al. Maternal stress during pregnancy induces depressive-like behavior only in female offspring and correlates to their hippocampal Avp and Oxt receptor expression. Behav Brain Res. 2018;353:1–10. DOI: 10.1016/j.bbr.2018.06.027 47. Grundwald NJ, Benítez DP, Brunton PJ. Sex-Dependent Effects of Prenatal Stress on Social Memory in Rats: A Role for Differential Expression of Central Vasopressin-1a Receptors. J Neuroendocrinol. 2016;28(4):n/a. DOI: 10.1111/jne.12343 48. Gur TL, Palkar AV, Rajasekera T, et al. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behav Brain Res. 2019;359:886–94. DOI: 10.1016/j.bbr.2018.06.025 49. de Souza MA, Centenaro LA, Menegotto PR, et al. Prenatal Stress Produces Social Behavior Deficits and Alters the Number of Oxytocin and Vasopressin Neurons in Adult Rats. Neurochem Res. 2013;38(7):1479–89. DOI: 10.1007/s11064-013-1049-5 50. Lee PR, Brady DL, Shapiro RA, et al. Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin. Brain Res. 2007;1156:152–67. DOI: 10.1016/j.brainres.2007.04.042 51. He F, Wang Z, Guo G. Postnatal separation prevents the development of prenatal stress-induced anxiety in association with changes in oestrogen receptor and oxytocin immunoreactivity in female mandarin vole (Microtus mandarinus) offspring. Eur J Neurosci. 2018;47(1):95–108. DOI: 10.1111/ejn.13788 52. Kajanoja J, Nolvi S, Kantojärvi K, et al. Oxytocin receptor genotype moderates the association between maternal prenatal stress and infant early self-regulation. Psychoneuroendocrinology. 2022;138:105669. DOI: 10.1016/j.psyneuen.2022.105669 53. Takayanagi Y., Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci. 2021;23(1):150. DOI: 10.3390/ijms23010150 54. Carter DA, Saridaki E, Lightman SL. Sexual differentiation of oxytocin stress responsiveness: effect of neonatal androgenization, castration and a luteinizing hormone-releasing hormone antagonist. Acta Endocrinol (Copenh). 1988;117(4):525–30. DOI: 10.1530/acta.0.1170525
Метрики статей
Metrics powered by PLOS ALM