Химически индуцированные модели болезни Альцгеймера: используемые подходы и новые перспективы

Полный текст:   Только для подписчиков

Рекомендуемое оформление библиографической ссылки:

Очнева А.Г., Гурин П.И., Очигова Е.Д., Ушакова В.М., Абрамова О.В., Валихов М.П., Зубков Е.А., Барыкин Е.П., Павлов К.А., Павлова О.В., Митькевич В.А., Шпорт С.В., Чехонин В.П., Морозова А.Ю. Химически индуцированные модели болезни Альцгеймера: используемые подходы и новые перспективы // Российский психиатрический журнал. 2024. №5. С. 78-91.

Аннотация

В научном обзоре с целью изучения и обобщения данных о химических трансляционных моделях болезни Альцгеймера было проанализировано 88 статей. Болезнь Альцгеймера – прогрессирующее нейродегенеративное заболевание. Недавние достижения в понимании патофизиологических механизмов болезни Альцгеймера и других когнитивных расстройств сделали возможным применение новых подходов к разработке методов лечения. Эти достижения были в определенной степени обусловлены использованием трансляционных моделей. В исследованиях используются различные виды моделей на животных, в том числе химические модели, которые основаны на введении веществ, вызывающих снижение когнитивных способностей у животных. В этом обзоре описаны основные патофизиологические механизмы болезни Альцгеймера и существующие химические трансляционные модели болезни Альцгеймера, которые имеют решающее значение для понимания патогенеза заболевания и оценки потенциала новых терапевтических подходов. Дополнительно приведены экспериментальные данные для нового подхода в моделировании болезни Альцгеймера на грызунах.

Ключевые слова деменция; болезнь Альцгеймера; трансляционные модели; бета-амилоид

Литература

1. Farlow MR. Moderate to severe Alzheimer disease: definition and clinical relevance. Neurology. 2005;65(6(3)):S1–4. DOI: 10.1212/WNL.65.6_suppl_3.S1 2. WHO. Risk Reduction of Cognitive Decline and Dementia. WHO Guidelines Geneva: World Health Organization; 2019. 78 р. 3. Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63–75.e2. DOI: 10.1016/j.jalz.2012.11.007 4. Cherdak MA, Mkhitaryan EA, Sharashkina NV, et al. [Rasprostranennost' kognitivnykh rasstroistv u patsientov starshego vozrasta v Rossiiskoi Federatsii]. Zh Nevrol Psikhiatr Im SS Korsakova. 2024;124(4–2):5–11. (In Russ.) DOI: 10.17116/jnevro20241240425 5. Seitz DP, Chan CC, Newton HT, et al. Mini-Cog for the diagnosis of Alzheimer's disease dementia and other dementias within a primary care setting. Cochrane Database Syst Rev. 2018;2(2):CD011415. DOI: 10.1002/14651858.CD011415.pub2 6. Upaganlawar AB, Dabhekar SV, Chandurkar PA, et al. Herbal medicine in the treatment of Alzheimer’s disease and Dementia: Phytoconstituent & their possible pharmacological activities. Depress Anxiety Open Access. 2022;5(1):1002. 7. Cabral JR, Hall RK, Rossi L, et al. Effects of long-term intake of DDT on rats. Tumori. 1982;68(1);11–7. DOI: 10.1177/030089168206800103 8. Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155–75. DOI: 10.1007/s00401-016-1662-x 9. Neha, Sodhi RK, Jaggi AS, Singh N. Animal models of dementia and cognitive dysfunction. Life Sci. 2014;109(2):73–86. DOI: 10.1016/j.lfs.2014.05.017 10. Hampel H, Mesulam MM, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141(7):1917–33. DOI: 10.1093/brain/awy132 11. Chen JY, Zhu Q, Zhang S, et al. Resveratrol in experimental Alzheimer’s disease models: A systematic review of preclinical studies. Pharmacol Res. 2019;150:104476. DOI: 10.1016/j.phrs.2019.104476 12. Zatta P, Drago D, Bolognin S, Sensi SL. Alzheimer's disease, metal ions and metal homeostatic therapy. Trends Pharmacol Sci. 2009;30(7):346–55. DOI: 10.1016/j.tips.2009.05.002 13. Tucker RP. The roles of microtubule-associated proteins in brain morphogenesis: a review. Brain Res Brain Res Rev. 1990;15(2):101–20. DOI: 10.1016/0165-0173(90)90013-e 14. Lee G, Neve RL, Kosik KS. The microtubule binding domain of tau protein. Neuron. 1989;2(6):1615–24. DOI: 10.1016/0896-6273(89)90050-0 15. Kuret J, Congdon EE, Li G, et al. Evaluating triggers and enhancers of tau fibrillization. Microsc Res Tech. 2005;67(3–4):141–55. DOI: 10.1002/jemt.20187 16. Li X, Bao X, Wang R. Experimental models of Alzheimer's disease for deciphering the pathogenesis and therapeutic screening. Int J Mol Med. 2016;37(2):271–83. DOI: 10.3892/ijmm.2015.2428 17. Sheppard O, Coleman M. Alzheimer’s Disease: Etiology, Neuropathology and Pathogenesis. In: Alzheimer’s Disease: Drug Discovery. X Huang, editor. Brisbane (AU): Exon Publications; 2020. р. 1–22. DOI: 10.36255/exonpublications.alzheimersdisease.2020.ch1 18. Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides. 2015;52:1–18. DOI: 10.1016/j.npep.2015.06.008 19. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3(3):205–14. DOI: 10.1038/nrd1330 20. Vaneev AN, Timoshenko RV, Gorelkin PV, et al. Nano- and Microsensors for In Vivo Real-Time Electrochemical Analysis: Present and Future Perspectives. Nanomaterials (Basel). 2022;12(21):3736. DOI: 10.3390/nano12213736 21. Vaneev AN, Gorelkin PV, Garanina AS, et al. In Vitro and In Vivo Electrochemical Measurement of Reactive Oxygen Species After Treatment with Anticancer Drugs. Anal Chem. 2020;92(12):8010–4. DOI: 10.1021/acs.analchem.0c01256 22. Armstrong RA. The Pathogenesis of Alzheimer′ s Disease: A Reevaluation of the “Amyloid Cascade Hypothesis”. Int J Alzheimers Dis. 2011;2011(1):630865. DOI: 10.4061/2011/630865 23. Mohamed AR, Soliman GY, Ismail CA, Mannaa HF. Neuroprotective role of vitamin D3 in colchicine-induced Alzheimer’s disease in rats. Alexandria J Med. 2015;51(2):127–36. DOI: 10.1016/j.ajme.2014.05.005 24. Haidara MA, Mikhailidis DP, Rateb MA, et al. Evaluation of the effect of oxidative stress and vitamin E supplementation on renal function in rats with streptozotocin-induced Type 1 diabetes. J Diabetes Complications. 2009;23(2):130–6. DOI: 10.1016/j.jdiacomp.2008.02.011 25. Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci. 1998;112(5):1199–208. DOI: 10.1037//0735-7044.112.5.1199 26. Yang S, Zhou G, Liu H, et al. Protective effects of p38 MAPK inhibitor SB202190 against hippocampal apoptosis and spatial learning and memory deficits in a rat model of vascular dementia. Biomed Res Int. 2013;2013:215798. DOI: 10.1155/2013/215798 27. Rai S, Kamat PK, Nath C, Shukla R. A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J Neuroimmunol. 2013;254(1–2):1–9. DOI: 10.1016/j.jneuroim.2012.08.008 28. Corallo CE, Whitfield A, Wu A. Anticholinergic syndrome following an unintentional overdose of scopolamine. Ther Clin Risk Manag. 2009;5(5):719–23. DOI: 10.2147/tcrm.s6732 29. San Tang K. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer's biomarkers. Life Sci. 2019;233:116695. DOI: 10.1016/j.lfs.2019.116695 30. Flicker C, Serby M, Ferris SH. Scopolamine effects on memory, language, visuospatial praxis and psychomotor speed. Psychopharmacology (Berl). 1990;100(2):243–50. DOI: 10.1007/BF02244414 31. Kumar A, Aggarwal A, Singh A, Naidu P. Animal models in drug discovery of Alzheimer’s disease: A mini review. EC Pharmacol Toxicol. 2016;2:60–79. 32. Moreira-Silva D, Carrettiero DC, Oliveira ASA, et al. Anandamide effects in a streptozotocin-induced Alzheimer’s disease-like sporadic dementia in rats. Front Neurosci. 2018;12:653. DOI: 10.3389/fnins.2018.00653 33. Wong-Riley M, Antuono P, Ho KC, et al. Cytochrome oxidase in Alzheimer's disease: biochemical, histochemical, and immunohistochemical analyses of the visual and other systems. Vision Res. 1997;37(24):3593–608. DOI: 10.1016/S0042-6989(96)00210-6 34. Bennett MC, Mlady GW, Kwon YH, Rose GM. Chronic in vivo sodium azide infusion induces selective and stable inhibition of cytochrome c oxidase. J Neurochem. 1996;66(6):2606–11. DOI: 10.1046/j.1471-4159.1996.66062606.x 35. Ye M, Han BH, Kim JS, et al. Neuroprotective effect of bean phosphatidylserine on TMT-induced memory deficits in a rat model. Int J Mol Sci. 2020;21(14):4901. DOI: 10.3390/ijms21144901 36. Lee S, Yang M, Kim J, et al. Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Res Bull. 2016;125:187–99. DOI: 10.1016/j.brainresbull.2016.07.010 37. Geloso MC, Corvino V, Michetti F. Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int. 2011;58(7):729–38. DOI: 10.1016/j.neuint.2011.03.009 38. Koczyk D. How does trimethyltin affect the brain: facts and hypotheses. Acta Neurobiol Exp (Wars). 1996;56(2):587–96. DOI: 10.55782/ane-1996-1164 39. O'Connell A, Earley B, Leonard BE. The neuroprotective effect of tacrine on trimethyltin induced memory and muscarinic receptor dysfunction in the rat. Neurochem Int. 1994;25(6):555–66. DOI: 10.1016/0197-0186(94)90154-6 40. Li B, Xia M, Zorec R, et al. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res. 2021;1752:147234. DOI: 10.1016/j.brainres.2020.147234 41. Priest ND. The Biological Behaviour and Bioavailability of Aluminium in Man, with Special Reference to Studies Employing Aluminium-26 as a Tracer: Review and Study Update. J Environ Monit. 2004;6(5):375–403. DOI: 10.1039/b314329p 42. Ferreira PC, Tonani KA, Julião FC, et al. Aluminum Concentrations in Water of Elderly People’s Houses and Retirement Homes and its Relation with Elderly Health. Bull Environ Contam Toxicol. 2009;83(4):565–9. DOI: 10.1007/s00128-009-9791-8 43. Bouras C, Giannakopoulos P, Good PF, et al. A Laser Microprobe Mass Analysis of Brain Aluminum and Iron in Dementia Pugilistica: Comparison with Alzheimer’s Disease. Eur. Neurol. 1997;38(1):53–8. DOI: 10.1159/000112903 44. Elmore SE, La Merrill MA. Oxidative phosphorylation impairment by DDT and DDE. Front Endocrinol (Lausanne). 2019;10:122. DOI: 10.3389/fendo.2019.00122 45. Exley C. A molecular mechanism of aluminium-induced Alzheimer's disease? J Inorg Biochem. 1999;76(2):133–40. DOI: 10.1016/s0162-0134(99)00125-7 46. Esclaire F, Lesort M, Blanchard C, Hugon J. Glutamate toxicity enhances tau gene expression in neuronal cultures. J Neurosci Res. 1997;49(3):309–18. DOI: 10.1002/(sici)1097-4547(19970801)49:3<309::aid-jnr6>3.0.co;2-g 47. Taïr K, Kharoubi O. Tair OA, et al. Aluminium-induced acute neurotoxicity in rats: Treatment with aqueous extract of Arthrophytum (Hammada scoparia). J Acute Dis. 2016;5(6):470–82. DOI: 10.1016/j.joad.2016.08.028 48. Xu Q-Q, Yang W, Zhong M, et al. Animal models of Alzheimer’s disease: preclinical insights and challenges. Acta Materia Medica. 2023;2(2):192–215. DOI: 10.15212/AMM-2023-0001 49. Casey A, Quinn S, McAdam B, et al. Colchicine-regeneration of an old drug. Ir J Med Sci. 2023;192(1):115–23. DOI: 10.1007/s11845-022-02938-7 50. Evrard PA, Ragusi C, Boschi G, et al. Simultaneous microdialysis in brain and blood of the mouse: extracellular and intracellular brain colchicine disposition. Brain Res. 1998;786(1–2):122–7. DOI: 10.1016/s0006-8993(97)01454-6 51. Malekzadeh S, Amin Edalatmanesh M, Mehrabani D, Shariati M. Drugs induced Alzheimer’s disease in animal model. Galen Med J. 2017;6(3):185–96. DOI: 10.22086/gmj.v6i3.820 52. Valdiglesias V, Prego-Faraldo MV, Pásaro E, et al. Okadaic acid: more than a diarrheic toxin. Mar Drugs. 2013;11(11):4328–49. DOI: 10.3390/md11114328 53. Murakami T, Kobayashi T, Terasawa T, et al. Characterization of Multiple Molecular Forms of Mg2+-Dependent Protein Phosphatase from Saccharomyces cerevisiae. J Biochem. 1994;115(4):762–6. DOI: 10.1093/oxfordjournals.jbchem.a124407 54. Fernández MT, Zitko V, Gascón S, et al. Neurotoxic Effect of Okadaic Acid, A Seafood-related Toxin, on Cultured Cerebellar Neurons. Ann N Y Acad Sci. 1993;679:260–9. DOI: 10.1111/j.1749-6632.1993.tb18306.x 55. Kamat PK, Rai S, Swarnkar S, et al. Mechanism of synapse redox stress in Okadaic acid (ICV) induced memory impairment: Role of NMDA receptor. Neurochem Int. 2014;76:32–41. DOI: 10.1016/J.Neuint.2014.06.012 56. Kalyan M, Tousif AH, Sonali S, et al. Role of Endogenous Lipopolysaccharides in Neurological Disorders. Cells. 2022;11(24):4038. DOI: 10.3390/cells11244038 57. Nazem A, Sankowski R, Bacher M, Al-abed Y. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 2015;12(1):74. DOI: 10.1186/s12974-015-0291-y 58. Zakaria R, Wan Yaacob WM, Othman Z, et al. Lipopolysaccharide-induced memory impairment in rats: a model of Alzheimer's disease. Physiol Res. 2017;66(4):553–65. DOI: 10.33549/physiolres.933480 59. Hailman E, Lichenstein HS, Wurfel MM, et al. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med. 1994;179(1):269–77. DOI: 10.1084/jem.179.1.269 60. Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9(6):429–39. DOI: 10.1038/nri2565 61. Azman KF, Zakaria R. D-Galactose-Induced Accelerated Aging Model: An Overview. Biogerontology. 2019;20(6):763–82. DOI: 10.1007/s10522-019-09837-y 62. Kamal H, Tan GC, Ibrahim SF, et al. Alcohol Use Disorder, Neurodegeneration, Alzheimer's and Parkinson's Disease: Interplay Between Oxidative Stress, Neuroimmune Response and Excitotoxicity. Front Cell Neurosci. 2020;14:282. DOI: 10.3389/fncel.2020.00282 63. Patil S, Tawari S, Mundhada D, Nadeem S. Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol Biochem Behav. 2015;136:13–20. DOI: 10.1016/j.pbb.2015.07.001 64. Sun AY, Sun GY. Ethanol and oxidative mechanisms in the brain. J Biomed Sci. 2001;8(1):37–43. DOI: 10.1007/BF02255969 65. Mailliard WS, Diamond I. Recent advances in the neurobiology of alcoholism: the role of adenosine. Pharmacol Ther. 2004;101(1):39–46. DOI: 10.1016/j.pharmthera.2003.10.002 66. Jiang K, Huang C, Liu F, et al. Origin and Fate of Acrolein in Foods. Foods. 2022;11(13):1976. DOI: 10.3390/foods11131976 67. Chen C, Lu J, Peng W, et al. Acrolein, an endogenous aldehyde induces Alzheimer's disease-like pathologies in mice: a new sporadic AD animal model. Pharmacol Res. 2022;175:106003. DOI: 10.1016/j.phrs.2021.106003 68. Srivastava S, Sithu SD, Vladykovskaya E, et al. Oral exposure to Acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis. 2001;215(2):301–8. DOI: 10.1016/j.atherosclerosis.2011.01.001 69. Haenen GR, Vermeulen NP, Tai Tin JN, et al. Activation of the microsomal glutathione-S-transferase and reduction of the glutathione dependent protection against lipid peroxidation by acrolein. Biochem Pharmacol. 1988;37(10):1933–38. DOI: 10.1016/0006-2952(88)90539-4 70. Lovella MA, Xie C, Markesbery WR. Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging. 2001;22(2):187–94. DOI: 10.1016/s0197-4580(00)00235-9 71. Selmanoğlu G, Özgün GM, Karacaoğlu E. Acrolein-mediated neurotoxicity in growing Wistar male rats. Pestic Biochem Physiol. 2018;149:37–43. DOI: 10.1016/j.pestbp.2018.05.006 72. Sanz-Gallardo MI, Guallar E, Van’t Veer P, et al. Determinants of p, p′-dichlorodiphenyldichloroethane (DDE) concentration in adipose tissue in women from five European cities. Arch Environ Health. 1999;54(4):277–83. DOI: 10.1080/00039899909602486 73. Rivero-Rodriguez L, Borja-Aburto VH, Santos-Burgoa C, et al. Exposure assessment for workers applying DDT to control malaria in Veracruz, Mexico. Environ Health Perspect. 1997;105(1):98–101. DOI: 10.1289/ehp.9710598 74. Li G, Kim C, Kim J, et al. Common pesticide, dichlorodiphenyltrichloroethane (DDT), increases amyloid-beta levels by impairing the function of ABCA1 and IDE: implication for Alzheimer’s disease. J Alzheimers Dis. 2015;46(1):109–22. DOI: 10.3233/JAD-150024 75. Eid A, Mhatre-Winters I, Sammoura FM, et al. Effects of DDT on amyloid precursor protein levels and amyloid beta pathology: mechanistic links to Alzheimer’s disease risk. Environ Health Perspect. 2022;130(8):087005. DOI: 10.1289/EHP10576 76. Yamada M, Chiba T, Sasabe J, et al. Implanted Cannula-Mediated Repetitive Administration of Abeta25-35 into the Mouse Cerebral Ventricle Effectively Impairs Spatial Working Memory. Behav Brain Res. 2005;164(2):139–46. DOI: 10.1016/j.bbr.2005.03.026 77. Sipos E, Kurunczi A, Kasza A, et al. Beta-Amyloid Pathology in the Entorhinal Cortex of Rats Induces Memory Deficits: Implications for Alzheimer’s Disease. Neuroscience. 2007;147(1):28–36. DOI: 10.1016/j.neuroscience.2007.04.011 78. Roher AE, Lowenson JD, Clarke S, et al. Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J Biol Chem. 1993;268(5):3072–83. PMID: 8428986 79. Mukherjee S, Perez KA, Lago LC, et al. Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer's disease. Brain Commun. 2021;3(2):fcab028. DOI: 10.1093/braincomms/fcab028 80. Barykin EP, Mitkevich VA, Kozin SA, Makarov AA. Amyloid β Modification: A Key to the Sporadic Alzheimer's Disease? Front Genet. 2017;8:58. DOI: 10.3389/fgene.2017.00058 81. Barykin EP, Garifulina AI, Kruykova EV, et al. Isomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the α7 Nicotinic Receptor and Promotes Neurotoxicity. Cells. 2019;8(8):771. DOI: 10.3390/cells8080771 82. Mitkevich VA, Petrushanko IY, Yegorov YE, et al. Isomerization of Asp7 leads to increased toxic effect of amyloid-β42 on human neuronal cells. Cell Death Dis. 2013;4(11):e939. DOI: 10.1038/cddis.2013.492 83. Kozin SA, Cheglakov IB, Ovsepyan AA, et al. Peripherally applied synthetic peptide isoAsp7-Aβ(1-42) triggers cerebral β-amyloidosis. Neurotox Res. 2013;24(3):370–6. DOI: 10.1007/s12640-013-9399-y 84. Laczó J, Parizkova M, Moffat SD. Spatial navigation, aging and Alzheimer's disease. Aging (Albany NY). 2018;10(11):3050–1. DOI: 10.18632/aging.101634 85. Kang S, Kim J, Chang KA. Spatial memory deficiency early in 6xTg Alzheimer's disease mouse model. Sci Rep. 2021;11(1):1334. DOI: 10.1038/s41598-020-79344-5 86. Stover KR, Campbell MA, Van Winssen CM, Brown RE. Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer's disease. Behav Brain Res. 2015;289:29–38. DOI: 10.1016/j.bbr.2015.04.012 87. Budson AE, Solomon PR. New criteria for Alzheimer disease and mild cognitive impairment: implications for the practicing clinician. Neurologist. 2012;18(6):356–63. DOI: 10.1097/NRL.0b013e31826a998d 88. Moro ML, Phillips AS, Gaimster K, et al. Pyroglutamate and Isoaspartate modified Amyloid-Beta in ageing and Alzheimer's disease. Acta Neuropathol Commun. 2018;6(1):3. DOI: 10.1186/s40478-017-0505-x

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM