Активность ферментов глутатионового обмена в форменных элементах крови у больных с поздно манифестирующей шизофренией.
Рекомендуемое оформление библиографической ссылки:
Терешкина Е.Б., Савушкина О.К., Бокша И.С., Прохорова Т.А., Шешенин В.С., Почуева В.В., Воробьева Е.А., Бурбаева Г.Ш. Активность ферментов глутатионового обмена в форменных элементах крови у больных с поздно манифестирующей шизофренией. // Российский психиатрический журнал. 2020. №6. С. 73-81.
В оригинальном исследовании с целью изучения активности глутатионредуктазы и глутатион-S-трансферазы в тромбоцитах и эритроцитах было обследовано 17 пациенток с поздно манифестирующей шизофренией (основная группа) и 19 женщин без психических и неврологических заболеваний (группа сравнения). Активность тромбоцитарной глутатион-S-трансферазы в основной группе связана с возрастом манифестации заболевания и относительно группы сравнения значительно и достоверно снижена. В подгруппе больных с относительно более ранней манифестацией заболевания (до 60 лет) активность тромбоцитарной глутатионредуктазы оказалась достоверно снижена. Результаты важны для оценки степени поражения глутатионового звена антиоксидантной системы у больных в пожилом возрасте.
Ключевые слова глутатионредуктаза; глутатион-S-трансфераза; эритроциты; тромбоциты; шизофрения; поздняя шизофрения
1. Yao JK, Reddy RD, van Kammen DP. Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs. 2001;15(4):287–310. DOI: https://doi.org/10.2165/00023210-200115040-00004 2. Steullet P, Cabungcal JH, Monin A, et al. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A “central hub” in schizophrenia pathophysiology? Schizophr Res. 2016;176(1):41–51. DOI: https://doi.org/10.1016/j.schres.2014.06.021 3. Krylatov AV, Maslov LN, Voronkov NS, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr Cardiol Rev. 2018;14(4):290–300. DOI: https://doi.org/10.2174/1573403X14666180702152436 4. Kohlgrüber S, Upadhye A, Dyballa-Rukes N, et al. Regulation of transcription factors by reactive oxygen species and nitric oxide in vascular physiology and pathology. Antioxid Redox Signal. 2017;26(13):679–99. DOI: https://doi.org/10.1089/ars.2016.6946 5. Parvez S, Long MJC, Poganik JR, Aye Y. Redox signaling by reactive electrophiles and oxidants. Chem Rev. 2018;118(18):8798–888. DOI: https://doi.org/10.1021/acs.chemrev.7b00698 6. Masselli E, Pozzi G, Vaccarezza M, et al. ROS in platelet biology: functional aspects and methodological insights. Int J Mol Sci. 2020;21(14):48–66. DOI: https://doi.org/10.3390/ijms21144866 7. Anderson G, Berk M, Dodd S, et al. Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:1–4. DOI: https://doi.org/10.1016/j.pnpbp.2012.10.008 8. Al-Asmari AK, Khan MW. Inflammation andschizophrenia: alterations in cytokine levels and perturbation in antioxidative defense systems. Hum Exp Toxicol. 2014;33(2):115–22. DOI: https://doi.org/10.1177/0960327113493305 9. Steullet P, Neijt HC, Cuenod M, Do KQ. Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia. Neuroscience. 2006;137(3):807–19. DOI: https://doi.org/10.1016/j.neuroscience.2005.10.014 10. Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH. NMDA receptors and schizophrenia. Curr Opin Pharmacol. 2007;7(1):48–55. DOI: https://doi.org/10.1016/j.coph.2006.08.013 11. Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M. Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev. 2015;48:10–21. DOI: https://doi.org/10.1016/j.neubiorev.2014.11.005 12. Prabakaran S, Swatton JE, Ryan MM, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Molecular Psychiatry. 2004;9(7):684–97. DOI: https://doi.org/10.1038/sj.mp.4001511 13. Li J, Baud O, Vartanian T, et al. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci USA. 2005;102(28):9936–41. DOI: https://doi.org/10.1073/pnas.0502552102 14. Gawryluk JW, Wang JF, Andreazza AC, et al. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011;14(1):123–30. DOI: https://doi.org/10.1017/S1461145710000805 15. Do KQ, Trabesinger AH, Kirsten-Krüger M, et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci. 2000;12(10):3721–8. DOI: https://doi.org/10.1046/j.1460-9568.2000.00229.x 16. Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74(6):400–9. DOI: https://doi.org/10.1016/j.biopsych.2013.03.018 17. Chien YL, Hwu HG, Hwang TJ, et al. Clinical implications of oxidative stress in schizophrenia: Acute relapse and chronic stable phase. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:109868. DOI: https://doi.org/10.1016/j.pnpbp.2020.109868 18. Kalinina EV, Chernov NN, Novichkova MD. Rol' glutationa, glutationtransferazy i glutaredoksina v regulyacii redoks-zavisimyh processov. Uspekhi biologicheskoj himii. 2014;54:299–348. Russian. 19. Kulinsky VI, Kolesnichenko LS. [The glutathione system. I. Synthesis, transport, glutathione transferases, glutathione peroxidases]. Biomeditsinskaya khimiya [Biomedical Chemistry]. 2009;55(3):129–44. Russian. DOI: https://doi.org/10.1134/S1990750809020036 20. Gysin R, Kraftsik R, Sandell J, et al. Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc Natl Acad Sci USA. 2007;104(42):16621–6. DOI: https://doi.org/10.1073/pnas.0706778104 21. Tsugawa S, Noda Y, Tarumi R, et al. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J Psychopharmacol. 2019;33(10):1199–214. DOI: https://doi.org/10.1177/0269881119845820 22. Sheshenin VS, Pochueva VV. [Late-onset schizophrenia]. Psikhiatriya [Psychiatry]. 2019;(81):101–10. Russian. DOI: https://doi.org/10.30629/2618-6667-2019-81-101-110 23. Kosenko EA, Tikhonova LA, Pogosyan AS, Kaminsky YuG. [Erythrocyte antioxidants in aging and dementia]. Biomeditsinskaya khimiya [Biomedical Chemistry]. 2013;59(4):443–51. Russian. DOI: https://doi.org/10.1134/S1990750812030079 24. Zalutskaya NM, Ushin KV, Shedrina LV, et al. [Comparative characteristics of enzymatic antioxidant protection in patients with mild cognitive decline and late-onset depression. Is a therapeutic correction possible?] Obozrenie psikhiatrii i meditsinskoi psikhologii imeni V.M. Bekhtereva [V.M. Bekhterev review of psychiatry and medical psychology]. 2018;(1):101–9. Russian. 25. Prokhorova TA, Tereshkina EB, Savushkina OK, et al. [The activity of enzymes of glutathione metabolism in blood cells of patients with a high risk of manifestation of endogenous psychoses and patients with the first psychotic episod]. Zh Nevrol Psikhiatr Im SS Korsakova. 2019;119(4):47–54. Russian. DOI: https://doi.org/10.17116/jnevro201911904147 26. Tereshkina EB, Savushkina OK, Boksha IS, et al. [Glutathione reductase and glutathione-S-transferase in blood cells in schizophrenia and schizophrenia spectrum disorders]. Zh Nevrol Psikhiatr Im SS Korsakova. 2019;119(2):61–5. Russian. DOI: https://doi.org/10.17116/jnevro201911902161 27. Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev. 2011;43(2):92–137. DOI: https://doi.org/10.3109/03602532.2011.567391 28. Boušová I, Skálová L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab Rev. 2012;44(4):267–86. DOI: https://doi.org/10.3109/03602532.2012.713969 29. Minetti M, Agati L, Malorni W. The microenvironment can shift erythrocytes from a friendly to a harmful behavior: Pathogenetic implications for vascular diseases. Cardiovascular Research. 2007;75(1):21–8. DOI: https://doi.org/10.1016/j.cardiores.2007.03.007 30. Asor E, Ben-Shachar D. Platelets: A possible glance into brain biological processes in schizophrenia. World J Psychiatry. 2012;2(6):124–33. DOI: https://doi.org/10.5498/wjp.v2.i6.124
DOI: http://dx.doi.org/10.24411/1560-957Х-2020-10609
Метрики статей
Metrics powered by PLOS ALM