Экспериментальные модели формирования физической зависимости от алкоголя
Рекомендуемое оформление библиографической ссылки:
Проскурякова Т.В., Шохонова В.А., Шамакина И.Ю. Экспериментальные модели формирования физической зависимости от алкоголя // Российский психиатрический журнал. 2021. №4. С. 80-92.
В научном обзоре с целью анализа современных экспериментальных подходов к изучению биологических основ алкогольной болезни рассматриваются основные стратегии создания моделей физической зависимости от алкоголя на животных: принудительное потребление алкоголя, «свободный выбор», оперантные модели самовведения, компульсивный поиск и потребление алкоголя на фоне «наказания». Описано влияние различных типов воздействия алкоголя (спиртосодержащая диета, пары этанола, пероральное введение алкоголя), генотипа и возраста животных на формирование экспериментальной алкогольной зависимости. Обсуждаются преимущества и ограничения различных методологических подходов при проведении трансляционных исследований алкогольной зависимости.
Ключевые слова алкоголь; зависимость; компульсивно-подобное поведение; абстинентный синдром
1. Becker HC. Alcohol Dependence, Withdrawal and Relapse. Alcohol Res Health. 2008;31(4):348–61. PMID: 23584009 2. Ivanec NN. [O roli lichnostnogo faktora pri hronicheskom alkogolizme]. Voprosy psihonevrologii. 1980;(8):54–6. (In Russ.) 3. Ivanec NN, Igonin AL. [Vzaimosvjaz' pokazatelej progredientnosti alkogolizma s nekotorymi premorbidnymi faktorami]. Zh Nevrol Psikhiatr Im SS Korsakova. 1983;83(8):1222–7. (In Russ.) 4. Garland EL, Boettiger CA, Howard MO. Targeting cognitive-affective risk mechanisms in stress-precipitated alcohol dependence: an integrated, biopsychosocial model of automaticity, allostasis, and addiction. Med Hypotheses. 2011;76(5):745–54. DOI: https://doi.org/10.1016/j.mehy.2011.02.014; PMID: 21354711 5. Isbell H, Fraser HF, Wikler A, et al. An experimental study of the etiology of rum fits and delirium tremens. Quart J Stud Alcohol. 1955;16:1–33. PMID: 14372008 6. Anohina IP. [Osnovnye biologicheskie mehanizmy boleznej zavisimosti ot psihoaktivnyh veshhestv]. Voprosy narkologii. 2017;(2–3):15–41. (In Russ.) 7. Koob GF, Le Moal M. Drug addiction, dysregulation of reward and allostasis. Neuropsychopharmacology. 2001;24(2):97–129. DOI: https://doi.org/10.1016/S0893-133X(00)00195-0; PMID: 11120394 8. Galesi FL, Ayanwuyi LO, Mijares MG, et al. Role of Hypothalamic-Pituitary-Adrenal axis and Corticotropin-Releasing Factor stress system on cue-induced relapse to alcohol seeking. Eur J Pharmacol. 2016;5(788):84–9. DOI: https://doi.org/10.1016/j.ejphar.2016.06.020; PMID: 27316790 9. Heilig M, Koob GF. A key role for corticotropin-releasing factor in alcohol dependence. Trends Neurosci. 2007;30(8):399–406. DOI: https://doi.org/10.1016/j.tins.2007.06.006; PMID: 17629579 10. Kwako LE, Spagnolo PA, Schwandt ML, et al. The Corticotropin Releasing Hormone-1 (CRH1) Receptor Antagonist Pexacerfont in Alcohol Dependence: A Randomized Controlled Experimental Medicine Study. Neuropsychopharmacology. 2015;13;40(5):1053–63. DOI: https://doi.org/10.1038/npp.2014.306; PMID: 25409596 11. Schwandt ML, Cortes CR, Kwako LE, et al. The CRF1 Antagonist Verucerfont in Anxious Alcohol-Dependent Women: Translation of Neuroendocrine, But not of Anti-Craving Effects. Neuropsychopharmacology. 2016;41(12):2818–29. DOI: https://doi.org/10.1038/npp.2016.61; PMID: 27109623 12. Anohina IP, Ivanec NN, Al'tshuler VB, et al. [Primenenie preparata takus dlja lechenija alkogol'nogo abstinentnogo sindroma]. Voprosy narkologii. 1992;(3–4):67–70. (In Russ.) 13. Anohin PK, Shamakina IJu, Proskurjakova TV, et al. [Selektivnyj agonist D2-receptorov kabergolin snizhaet potreblenie alkogolja i povyshaet uroven' mRNK DRD2 v mozge krys s hronicheskoj alkogol'noj intoksikaciej]. Nejrohimija. 2017;34(1):72–9. (In Russ.) 14. Litten RZ, Wilford BB, Falk DE, et al. Potential medications for the treatment of alcohol use disorder: an evaluation of clinical efficacy and safety. Subst Abus. 2016;37(2):286–98. DOI: https://doi.org/10.1080/08897077.2015.1133472; PMID: 26928397 15. Kranzler HR, Soyka M. Diagnosis and pharmacotherapy of alcohol use disorder: a review. JAMA. 2018;320:815–24. DOI: 10.1001/jama.2018.11406; PMID: 30167705 16. Guerzoni S, Pellesi L, Pini LA, et al. Drug-drug interactions in the treatment for alcohol use disorders: A comprehensive review. Pharmacol Res. 2018;133:65–76. DOI: https://doi.org/10.1016/j.phrs.2018.04.024; PMID: 29719204 17. Shekunova EV, Kashkin VA, Makarova MN, et al. [Modelirovanie alkogol'noj zavisimosti u zhivotnyh]. Mezhdunarodnyj vestnik veterinarii. 2015;(3):84–91. (In Russ.) 18. Anohina IP. [Udovol'stvie i patogenez boleznej zavisimosti]. Voprosy narkologii. 2018;(2):22–34. (In Russ.) 19. Labots M, Cousijn J, Jolink LA, et al. Age-Related Differences in Alcohol Intake and Control Over Alcohol Seeking in Rats. Front Psychiatry. 2018;9:419. DOI: https://doi.org/10.3389/fpsyt.2018.00419; PMID: 30233434 20. Rogers J, Wiener SG, Bloom FE. Long-term ethanol administration methods for rats: advantages of inhalation over intubation or liquid diets. Behav Neural Biol. 1979;27(4):466–86. DOI: https://doi.org/10.1016/s0163-1047(79)92061-2; PMID: 575037 21. Ruwe WD, Bauce L, Flemons WW, et al. Alcohol dependence and withdrawal in the rat. An effective means of induction and assessment. J Pharmacol Method. 1986;15(3):225–34. DOI: https://doi.org/10.1016/0160-5402(86)90052-5; PMID: 3713203 22. O’Shea RS, Dasarathy S, McCullough AJ. Alcoholic liver disease. Hepatology. 2009;105(1):14–32. DOI: https://doi.org/10.1038/ajg.2009.593; PMID: 19904248 23. Seitz HK, Stickel F. Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr. 2010;5(2):121–8. DOI: https://doi.org/10.1007/s12263-009-0154-1; PMID: 19847467 24. Hanck C, Whitcomb DC. Alcoholic pancreatitis. Gastroenterol. 2004;33(4):751–65. DOI: https://doi.org/10.1016/j.gtc.2004.07.002; PMID: 15528016 25. Jeong WI, Gao B. Innate immunity and alcoholic liver fibrosis. J Gastroenterol Hepatol. 2008;23(Suppl 1):112–8. DOI: https://doi.org/10.1111/j.1440-1746.2007.05274.x; PMID: 18336653 26. Lau A, von Dossov V, Sander M, et al. Alcohol use disorder and perioperative immune dysfunction. Anesth Analg. 2009;108(3):916–20. DOI: https://doi.org/10.1213/ane.0b013e318193fd89; PMID:19224804 27. Proskurjakova TV, Nuzhnyj VP, Rozhanec VV. Farmakologija i toksikologija psihoaktivnyh veshhestv. In: Ivanеc NN, Anohina IP, Vinnikova MA, editors. Narkologija. Nacional'noe rukovodstvo. Moscow; 2008. p. 134–74. (In Russ.) 28. Panchenko LF, Moiseev VS, Pirozhkov SV, et al. [Soderzhanie markerov vospalenija i citokinov v krovi bol'nyh alkogol'noj kardiomiopatiej i ishemicheskoj bolezn'ju serdca na raznyh stadijah serdechnoj nedostatochnosti]. Kardiologija. 2015;3:41–8. (In Russ.) 29. Panchenko LF, Pirozhkov SV, Baronec VJu, et al. [Soderzhanie markerov jendotelial'noj disfunkcii i mediatorov vospalenija u bol'nyh alkogolizmom s hronicheskoj serdechnoj nedostatochnost'ju na konechnyh stadijah razvitija]. Narkologija. 2018;17(2):20–8. (In Russ.) 30. Lester D, Freed EX. Criteria for an animal model of alcoholism. Pharmacol Biochem Behav. 1973;1(1):103–7. DOI: https://doi.org/10.1016/0091-3057(73)90062-2; PMID: 4204511 31. Majchrowicz E. Induction of Physical Dependence upon Ethanol and the Associated Behavioral Changes in Rats. Psychopharmacologia (Berl.). 1975;43(3):245–54. DOI: https://doi.org/10.1007/BF00429258; PMID: 1237914 32. Goldstein DB. Physical dependence on alcohol in mice. Fed Proc. 1975;34(10):1953–61. PMID: 1098938 33. Budygin EA, Oleson EB, Mathews TA, et al. Effects of chronic alcohol exposure on dopamine uptake in rat nucleus accumbens and caudate putamen. Psychopharmacology (Berl.). 2007;193(4):495–501. DOI: https://doi.org/10.1007/s00213-007-0812-1; PMID: 17492432 34. Roberto M, Madamba SG, Stouffer DG, et al. Increased GABA release in the central amygdala of ethanol-dependent rats. J Neurosci. 2004;24(45):10159–66. DOI: https://doi.org/10.1523/JNEUROSCI.3004-04.2004; PMID: 15537886 35. MacLeand RR, Valentine GW, Jatlow PI, et al. Inhalation of Alcohol Vapor: Measurement an Implications. Alcohol Clin Exp Res. 2017;41(2):238–50. DOI: https://doi.org/10.1111/acer.13291; PMID: 28054395 36. Macey DJ, Schulteis G, Heinrichs SC, et al. Time-dependent quantifiable withdrawal from ethanol in the rat: effect of method of dependence induction. Alcohol. 1996;13(2):163–70. DOI: https://doi.org/10.1016/0741-8329(95)02030-6; PMID: 8814651 37. Meisch RA, Thompson T. Ethanol intake during schedule-induced polydipsia. Physiol Behav. 1972;8(3):471–5. DOI: https://doi.org/10.1016/0031-9384(72)90331-9; PMID: 5037545 38. Wayner MJ, Greenberg I. Effects of hypothalamic stimulation, acclimation and periodic withdrawal on ethanol consumption. Physiol Behav. 1972;9(5):737–40. DOI: https://doi.org/10.1016/0031-9384(72)90043-1; PMID: 4570173 39. Myers RD, Robinson DE, West MW. Genetics of alcoholism: rapid development of a new high-ethanol-preferring (HEP) strain of female and male rats. Alcohol. 1998;16(4):343–57. DOI: https://doi.org/10.1016/s0741-8329(98)00031-7; PMID: 9818988 40. Becker HC, Lopez MF. Increased ethanol drinking after repeated chronic ethanol exposure and withdrawal experience in C57BL/6 mice. Alcohol Clin Exp Res. 2004;28(12):1829–38. DOI: https://doi.org/10.1097/01.alc.0000149977.95306.3a; PMID: 15608599 41. Kimbrough A, Kim S, Cole M. Intermittent Access to Ethanol Drinking Facilitates the Transition to Excessive Drinking After Chronic Intermittent Ethanol Vapor Exposure. Alcohol Clin Exp Res. 2017;41(8):1502–9. DOI: https://doi.org/10.1111/acer.13434; PMID: 28679148 42. Sinclair JD, Hyytia P, Nurmi M. The limited access paradigm: description one method. Alcohol. 1992;9(5):441–4. DOI: https://doi.org/10.1016/0741-8329(92)90045-c; PMID: 1418671 43. Wise RA. Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia. 1973;29(3):203–10. DOI: https://doi.org/10.1007/BF00414034; PMID: 4702273 44. Rimondini R, Arlinde C, Sommer W, et al. Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J. 2002;16(1):27–35. DOI: https://doi.org/10.1096/fj.01-0593com; PMID: 11772933 45. Blaine SK, Sinha R. Alcohol, stress and glucocorticoids: From risk to dependence and relapse in alcohol use disorders. Neuropharmacology. 2017;1(122):136–47. DOI: https://doi.org/10.1016/j.neuropharm.2017.01.037; PMID: 28159647 46. Simms JA, Steensland P, Medina B, et al. Intermittent Access to 20% Ethanol Induces High Ethanol Consumption in Long–Evans and Wistar Rats. Alcohol Clin Exp Res. 2008;32(10):1816–23. DOI: https://doi.org/10.1111/j.1530-0277.2008.00753.x; PMID: 18671810 47. Bell RL, Rodd ZA, Lumeng L, et al. The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol. 2006;11(3–4):270–88. DOI: https://doi.org/10.1111/j.1369-1600.2005.00029.x; PMID: 16961759 48. Fu R, Gregor D, Peng Z, et al. Chronic intermittent voluntary drinking induces hyperalgesia in Sprague-Dawley rats. Int J Physiol Pathophysiol Pharmacol. 2015;7(3):136–44. PMID: 26823962 49. Rhodes JS, Ford MM, Yu CH, et al. Mouse Inbred Strain Differences in Ethanol Drinking to Intoxication. Genes Brain Behav. 2007;6(1):1–18. DOI: https://doi.org/10.1111/j.1601-183X.2006.00210.x; PMID: 17233637 50. Delker E, Brown K, Hasin DS. Alcohol consumption in demographic population subgroups: an epidemiological overview. Alcohol Res. 2016;38(1):7–15. PMID: 27159807 51. Gilpin NV, Richardson HN, Lumeng L, et al. Addiction-induced alcohol consumption by alcohol-preferred (P) rats and outbred Wistar rats. Alcohol Clin Exp Res. 2008;32(9):1688–96. DOI: https://doi.org/10.1111/j.1530-0277.2008.00678.x; PMID: 18482158 52. O'Dell LE, Roberts AJ, Smith RT, et al. Enhanced alcohol self-administration after intermittent versus continuous alcohol vapor exposure. Alcohol Clin Exp Res. 2004;28(11):1676–82. DOI: https://doi.org/10.1097/01.alc.0000145781.11923.4e; PMID: 15547454 53. Vendruscolo LF, Barbier E, Schlosburg JE, et al. Corticosteroid-dependent plasticity mediates compulsive alcohol drinking in rats. J Neurosci. 2012;32(22):7563–71. DOI: https://doi.org/10.1523/JNEUROSCI.0069-12.2012; PMID: 22649234 54. Lesscher HMD, Linda WM, van Kerkhoff LWM, et al. Inflexible and indifferent alcohol drinking in male mice. Alcohol Clin Exp. 2010;34(7):1219–25. DOI: https://doi.org/10.1111/j.1530-0277.2010.01199.x; PMID: 20477770 55. Hopf FW, Chang SJ, Sparta DR, et al. Alcohol motivation becomes resistant to quinine tampering after 3-4 months of intermittent alcohol consumption. Alcohol Clin Exp Res. 2010;34(9):1565–73. DOI: https://doi.org/10.1111/j.1530-0277.2010.01241.x; PMID: 20586757 56. Radke AK, Jury NJ, Kocharian A, et al. Chronic EtOH effects on putative measures of compulsive behavior in mice. Addict Biol. 2017;22(2):423–34. DOI: https://doi.org/10.1111/adb.12342; PMID: 26687341 57. Vollstadt-Klein S, Wichert S, Rabinstein J, et al. Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction. 2010;105(10):1741–9. DOI: https://doi.org/10.1111/j.1360-0443.2010.03022.x; PMID: 20670348 58. Sebold M, Nebe S, Garbusow M, et al. When habits are dangerous: Alcohol expectancies and habitual decision making predict relapse in alcohol dependence. Biol Psychiatry. 2017;82(11):847–56. DOI: https://doi.org/10.1016/j.biopsych.2017.04.019; PMID: 28673442 59. Grodin EN, Sussman L, Sundby K, et al. Neural Correlates of Compulsive Alcohol Seeking in Heavy Drinkers. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(12):1022–31. DOI: https://doi.org/10.1016/j.bpsc.2018.06.009; PMID: 30143454 60. Schoenbaum G, Shaham Y. The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry. 2008;63(3):256–62. DOI: https://doi.org/10.1016/j.biopsych.2007.06.003; PMID: 17719014 61. Patton MS, Heckman M, Kim C, et al. Compulsive alcohol consumption is regulated by dorsal striatum fast-spiking interneurons. Neuropsychopharmacology. 2021;46(2):351–9. DOI: https://doi.org/10.1038/s41386-020-0766-0; PMID: 32663841 62. Seif T, Chang S-J, Simms JA, et al. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat Neurosci. 2013;16(8):1094–100. DOI: https://doi.org/10.1038/nn.3445; PMID: 23817545 63. Seif T, Simms JA, Lei K. D-Serine and D-Cycloserine Reduce Compulsive Alcohol Intake in Rats. Neuropsychopharmacology. 2015;40(10):2357–67. DOI: https://doi.org/10.1038/npp.2015.84; PMID: 25801502 64. Giuliano С, Peña-Oliver Н, Goodlett CR, et al. Evidence for a Long-Lasting Compulsive Alcohol Seeking Phenotype in Rats. Neuropsychopharmacology. 2018;43(4):728–38. DOI: https://doi.org/10.1038/npp.2017.105; PMID: 28553834 65. Brodie MS, Appel SB. Dopaminergic neurons in the ventral tegmental area of C57BL/6J and DBA/2J mice differ in sensitivity to ethanol excitation. Alcohol Clin Exp Res. 2000;24(7):1120–4. PMID: 10924018 66. Chung C-S, Wang J, Wehman M, et al. Severity of alcohol withdrawal symptoms depends on developmental stage of Long-Evans rats. Pharmacol Biochem Behav. 2008;89(2):137–44. DOI: https://doi.org/10.1016/j.pbb.2007.12.002; PMID: 18207224
DOI: http://dx.doi.org/10.47877/1560-957Х-2021-10409
Метрики статей
Metrics powered by PLOS ALM