Gene-cell therapy – innovative strategy for the treatment of diseases of the central nervous system

Full Text:   Subscribers Only

Suggested citation:

Fursa GA, Andrecova SS, Voronova AD, et al. [Gene-cell therapy – innovative strategy for the treatment of diseases of the central nervous system]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2024;(3):55-66. Russian

Abstract

In this scientific review, in order to summarize the current state of experimental therapy for diseases of the central nervous system, the use of such an innovative approach as gene cell therapy is considered. Numerous experimental studies and a number of clinical studies on the use of various types of cells in traumatic injuries of the brain and spinal cord, as well as in neurodegenerative diseases, have yielded positive results. Cell transplantation can promote the regeneration of damaged nerve tissue by activating axonal growth and myelination, as well as the restoration of motor, sensory and cognitive functions. The most promising are parietal cells obtained from the olfactory mucosa of the nose and gene cell preparations based on transduced cells expressing neurotrophic factors. Research on viral vectors encoding neurotrophic factors and ways to enhance the efficiency of transduction opens up new opportunities for the treatment of neurodegenerative and post-traumatic diseases of the central nervous system.

Keywords cell transplantation; central nervous system; neurodegenerative diseases; spinal cord injuries; brain injuries; gene cell therapy; ensheathing cells

References

1. Allan SM, Rothwell NJ. Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci. 2003;358(1438):1669–77. DOI: http://doi.org/10.1098/rstb.2003.1358 2. Sivandzade F, Cucullo L. Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview. Int J Mol Sci. 2021;22(4):2153. DOI: https://doi.org/10.3390/ijms22042153 3. Agnello L, Ciaccio M. Neurodegenerative Diseases: From Molecular Basis to Therapy. Int J Mol Sci. 2022;23(21):12854. DOI: https://doi.org/10.3390/ijms232112854 4. GBD 2017 US Neurological Disorders Collaborators; Feigin VL, et al. Burden of Neurological Disorders Across the US From 1990–2017: A Global Burden of Disease Study. JAMA Neurol. 2021;78(2):165–76. DOI: https://doi.org/10.1001/jamaneurol.2020.4152 5. Craig A, Tran Y, Middleton J. Psychological morbidity and spinal cord injury: a systematic review. Spinal Cord. 2009;47(2):108–14. DOI: https://doi.org/10.1038/sc.2008.115 6. Krause JS, Cao Y, DiPiro N. Psychological factors and risk of mortality after spinal cord injury. J Spinal Cord Med. 2020;43(5):667–75. DOI: https://doi.org/10.1080/10790268.2019.1690766 7. Scholten EWM, Ketelaar M, Visser-Meily JMA, et al. Prediction of Psychological Distress Among Persons With Spinal Cord Injury or Acquired Brain Injury and Their Significant Others. Arch Phys Med Rehabil. 2020;101(12):2093–102. DOI: https://doi.org/10.1016/j.apmr.2020.05.023 8. Kormas P, Moutzouri A. Current Psychological Approaches in Neurodegenerative Diseases. Handbook of Computational Neurodegeneration. P Vlamos, IS Kotsireas, I Tarnanas, editors. Cham: Springer International Publishing; 2020. р. 261–89. DOI: https://doi.org/10.1007/978-3-319-75922-7_10 9. Ovaska-Stafford N, Maltby J, Dale M. Literature Review: Psychological Resilience Factors in People with Neurodegenerative Diseases. Arch Clin Neuropsychol. 2021;36(2):283–306. DOI: https://doi.org/10.1093/arclin/acz063 10. Manwell LA, Tadros M, Ciccarelli TM, Eikelboom R. Digital dementia in the internet generation: excessive screen time during brain development will increase the risk of Alzheimer’s disease and related dementias in adulthood. J Integr Neurosci. 2022;21(1):28. DOI: https://doi.org/10.31083/j.jin2101028 11. Mehanna R, Jankovic J. Young-onset Parkinson’s disease: Its unique features and their impact on quality of life. Parkinsonism Relat Disord. 2019;65:39–48. DOI: https://doi.org/10.1016/j.parkreldis.2019.06.001 12. Li X, Sundström E. Stem Cell Therapies for Central Nervous System Trauma: The 4 Ws – What, When, Where, and Why. Stem Cells Transl Med. 2022;11(1):14–25. DOI: https://doi.org/10.1093/stcltm/szab006 13. Sakthiswary R, Raymond AA. Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regen Res. 2012;7(23):1822–31. DOI: https://doi.org/10.3969/j.issn.1673-5374.2012.23.009 14. Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primer. 2017;3(1):17018. DOI: https://doi.org/10.1038/nrdp.2017.18 15. McAllister TW. Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci. 2011;13(3):287–300. DOI: https://doi.org/10.31887/DCNS.2011.13.2/tmcallister 16. Adams KL, Gallo V. The diversity and disparity of the glial scar. Nat Neurosci. 2018;21(1):9–15. DOI: https://doi.org/10.1038/s41593-017-0033-9 17. Fischer T, Stern C, Freund P, et al. Wallerian degeneration in cervical spinal cord tracts is commonly seen in routine T2-weighted MRI after traumatic spinal cord injury and is associated with impairment in a retrospective study. Eur Radiol. 2021;31(5):2923–32. DOI: https://doi.org/10.1007/s00330-020-07388-2 18. Koliatsos VE, Alexandris AS. Wallerian degeneration as a therapeutic target in traumatic brain injury. Curr Opin Neurol. 2019;32(6):786–95. DOI: https://doi.org/10.1097/WCO.0000000000000763 19. Greenhalgh AD, David S. Differences in the Phagocytic Response of Microglia and Peripheral Macrophages after Spinal Cord Injury and Its Effects on Cell Death. J Neurosci. 2014;34(18):6316–22. DOI: https://doi.org/10.1523/JNEUROSCI.4912-13.2014 20. Buss A. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain. 2004;127(1):34–44. DOI: https://doi.org/10.1093/brain/awh001 21. Wu J, Zhao Z, Sabirzhanov B, et al. Spinal Cord Injury Causes Brain Inflammation Associated with Cognitive and Affective Changes: Role of Cell Cycle Pathways. J Neurosci. 2014;34(33):10989–1006. DOI: https://doi.org/10.1523/JNEUROSCI.5110-13.2014 22. El Sayed T, Mota A, Fraternali F, Ortiz M. Biomechanics of traumatic brain injury. Comput Methods Appl Mech Eng. 2008;197(51–52):4692–701. DOI: https://doi.org/10.1016/J.CMA.2008.06.006 23. Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: Clues to axon and myelin repair capacity. Exp Neurol. 2016;275(3):328–33. DOI: https://doi.org/10.1016/j.expneurol.2015.02.011 24. Vieira RDCA, Paiva WS, de Oliveira DV, et al. Diffuse Axonal Injury: Epidemiology, Outcome and Associated Risk Factors. Front Neurol. 2016;7:178. DOI: https://doi.org/10.3389/fneur.2016.00178 25. Page KM, Stenger EO, Connelly JA, et al. Hematopoietic Stem Cell Transplantation to Treat Leukodystrophies: Clinical Practice Guidelines from the Hunter’s Hope Leukodystrophy Care Network. Biol Blood Marrow Transplant. 2019;25(12):e363–74. DOI: https://doi.org/10.1016/j.bbmt.2019.09.003 26. Casas BS, Vitória G, do Costa MN, et al. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Transl Psychiatry. 2018;8(1):48. DOI: https://doi.org/10.1038/s41398-018-0095-9 27. Buddhala C, Loftin SK, Kuley BM, et al. Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Ann Clin Transl Neurol. 2015;2(10):949–59. DOI: https://doi.org/10.1002/acn3.246 28. Conner L, Srinageshwar B, Bakke JL, et al. Advances in stem cell and other therapies for Huntington’s disease: An update. Brain Res Bull. 2023;199:110673. DOI: https://doi.org/10.1016/j.brainresbull.2023.110673 29. Morata-Tarifa C, Azkona G, Glass J, et al. Looking backward to move forward: a meta-analysis of stem cell therapy in amyotrophic lateral sclerosis. NPJ Regen Med. 2021;6(1):20. DOI: https://doi.org/10.1038/s41536-021-00131-5 30. Chen X, Jiang S, Wang R, et al. Neural Stem Cells in the Treatment of Alzheimer’s Disease: Current Status, Challenges, and Future Prospects. J Alzheimers Dis. 2023;94(s1):S173–86. DOI: https://doi.org/10.3233/JAD-220721 31. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7(2):e105–25. DOI: https://doi.org/10.1016/S2468-2667(21)00249-8 32. Ying C, Zhang J, Zhang H, et al. Stem cells in central nervous system diseases: Promising therapeutic strategies. Exp Neurol. 2023;369:114543. DOI: https://doi.org/10.1016/j.expneurol.2023.114543 33. Qin C, Wang K, Zhang L, Bai L. Stem cell therapy for Alzheimer’s disease: An overview of experimental models and reality. Animal Model Exp Med. 2022;5(1):15–26. DOI: https://doi.org/10.1002/ame2.12207 34. Prasad EM, Hung S-Y. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson’s Disease. Antioxidants. 2020;9(10):1007. DOI: https://doi.org/10.3390/antiox9101007 35. Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int. 2017;106;94–100. DOI: https://doi.org/10.1016/j.neuint.2017.02.006 36. Bugos O, Bhide M, Zilka N. Beyond the Rat Models of Human Neurodegenerative Disorders. Cell Mol Neurobiol. 2009;29(6–7):859–69. DOI: https://doi.org/10.1007/s10571-009-9367-5 37. Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci. 2018;21(10):1370–9. DOI: https://doi.org/10.1038/s41593-018-0236-8 38. Emborg ME. Nonhuman Primate Models of Neurodegenerative Disorders. ILAR J. 2017;58(2):190–201. DOI: https://doi.org/10.1093/ilar/ilx021 39. Pan M-T, Zhang H, Li XJ, Guo XY. Genetically modified non-human primate models for research on neurodegenerative diseases. Zool Res. 2024;45(2):263–74. DOI: https://doi.org/10.24272/j.issn.2095-8137.2023.197 40. Yang D, Zhang ZJ, Oldenburg M, et al. Human Embryonic Stem Cell-Derived Dopaminergic Neurons Reverse Functional Deficit in Parkinsonian Rats. Stem Cells. 2008;26(1):55–63. DOI: https://doi.org/10.1634/stemcells.2007-0494 41. McGinley LM, Kashlan ON, Bruno ES, et al. Human neural stem cell transplantation improves cognition in a murine model of Alzheimer’s disease. Sci Rep. 2018;8(1):14776. DOI: https://doi.org/10.1038/s41598-018-33017-6 42. Liang X-S, Sun Z-W, Thomas AM, Li S. Mesenchymal Stem Cell Therapy for Huntington Disease: A Meta-Analysis. Stem Cells Int. 2023;2023:1109967. DOI: https://doi.org/10.1155/2023/1109967 43. Minkelyte K, Li D, Li Y, Ibrahim A. High-Yield Mucosal Olfactory Ensheathing Cells Restore Loss of Function in Rat Dorsal Root Injury. Cells. 2021;10(5):1186. DOI: https://doi.org/10.3390/cells10051186 44. Andrews PJ, Poirrier AL, Lund VJ, Choi D. Safety of human olfactory mucosal biopsy for the purpose of olfactory ensheathing cell harvest and nerve repair: a prospective controlled study in patients undergoing endoscopic sinus surgery. Rhinology. 2016;54(2):183–91. DOI: https://doi.org/10.4193/Rhino15.365 45. Tabakow P, Jarmundowicz W, Czapiga B, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013;22(9):1591–612. DOI: https://doi.org/10.3727/096368912X663532 46. Denaro S, D'Aprile S, Alberghina C, et al. Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for neuroprotection and regeneration. Front Immunol. 2022;13:1098212. DOI: https://doi.org/10.3389/fimmu.2022.1098212 47. Zhang L, Liao JX, Liu YY, et al. Potential therapeutic effect of olfactory ensheathing cells in neurological diseases: neurodegenerative diseases and peripheral nerve injuries. Front Immunol. 2023;14:1280186. DOI: https://doi.org/10.3389/fimmu.2023.1280186 48. Agrawal AK, Shukla S, Chaturvedi RK, et al. Olfactory ensheathing cell transplantation restores functional deficits in rat model of Parkinson’s disease: a cotransplantation approach with fetal ventral mesencephalic cells. Neurobiol Dis. 2004;16(3):516–26. DOI: https://doi.org/10.1016/j.nbd.2004.04.014 49. Yu A, Mao L, Zhao F, Sun B. Olfactory ensheathing cells transplantation attenuates chronic cerebral hypoperfusion induced cognitive dysfunction and brain damages by activating Nrf2/HO-1 signaling pathway. Am J Transl Res. 2018;10(10):3111–21. PMID: 30416654 50. Nakhjavan-Shahraki B, Yousefifard M, Rahimi-Movaghar V, et al. Transplantation of olfactory ensheathing cells on functional recovery and neuropathic pain after spinal cord injury; systematic review and meta-analysis. Sci Rep. 2018;8(1):325. DOI: https://doi.org/10.1038/s41598-017-18754-4 51. Stepanova OV, Voronova AD, Chadin AV, et al. Neurotrophin-3 Enhances the Effectiveness of Cell Therapy in Chronic Spinal Cord Injuries. Bull Exp Biol Med. 2022;173(1):114–8. DOI: https://doi.org/10.1007/s10517-022-05504-4 52. Voronova AD, Stepanova OV, Valikhov MP, et al. Combined Preparation of Human Olfactory Ensheathing Cells in the Therapy of Post-Traumatic Cysts of the Spinal Cord. Bull Exp Biol Med. 2020;169(4):539–43. DOI: https://doi.org/10.1007/s10517-020-04925-3 53. Hwang J-Y, Won J-S, Nam H, et al. Current advances in combining stem cell and gene therapy for neurodegenerative diseases. Precis Future Med. 2018;2(2):53–65. DOI: https://doi.org/10.23838/pfm.2018.00037 54. Chen W, Hu Y, Ju D. Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm Sin B. 2020;10(8):1347–59. DOI: https://doi.org/10.1016/j.apsb.2020.01.015 55. Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. Lancet. 2022;400(10360):1363–80. DOI: https://doi.org/10.1016/S0140-6736(22)01272-7 56. Henderson CE. Role of neurotrophic factors in neuronal development. Curr Opin Neurobiol. 1996;6(1):64–70. DOI: https://doi.org/10.1016/s0959-4388(96)80010-9 57. Ciammola A, Sassone J, Cannella M, et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(4):574–7. DOI: https://doi.org/10.1002/ajmg.b.30501 58. Pollock K, Dahlenburg H, Nelson H, et al. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington’s Disease Mouse Models. Mol Ther. 2016;24(5):965–77. DOI: https://doi.org/10.1038/mt.2016.12 59. Li H, Yin Z, Yue S, et al. Effect of valproic acid combined with transplantation of olfactory ensheathing cells modified by neurotrophic 3 gene on nerve protection and repair after traumatic brain injury. Neuropeptides. 2024;103:102389. DOI: https://doi.org/10.1016/j.npep.2023.102389 60. Prager J, Ito D, Carwardine DR, et al. Delivery of chondroitinase by canine mucosal olfactory ensheathing cells alongside rehabilitation enhances recovery after spinal cord injury. Exp Neurol. 2021;340:113660. DOI: https://doi.org/10.1016/j.expneurol.2021.113660 61. Stepanova OV, Voronova AD, Sosnovtseva AO, et al. Study of the Therapeutic Efficiency of Transduced Olfactory Ensheathing Cells in Spinal Cord Cysts. Stem Cells Dev. 2022;31(1–2):9–17. DOI: https://doi.org/10.1089/scd.2021.0265 62. Liu Q, Qin Q, Sun H, et al. Neuroprotective effect of olfactory ensheathing cells co-transfected with Nurr1 and Ngn2 in both in vitro and in vivo models of Parkinson’s disease. Life Sci. 2018;194:168–76. DOI: https://doi.org/10.1016/j.lfs.2017.12.038 63. Guo X, Wang Y, Liu Y, et al. A pilot study of clinical cell therapies in Alzheimer’s disease. J Neurorestoratology. 2021;9(4):269–84. DOI: https://doi.org/10.26599/JNR.2021.9040023 64. Yasuhara T, Kawauchi S, Kin K, et al. Cell therapy for central nervous system disorders: Current obstacles to progress. CNS Neurosci Ther. 2020;26(6):595–602. DOI: https://doi.org/10.1111/cns.13247

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM