Genome-wide association studies of alcohol dependence syndrome and alcohol abuse

Full Text:   Subscribers Only

Suggested citation:

Yakovchik AYu, Mamchur AA, Ivanov MV, et al. [Genome-wide association studies of alcohol dependence syndrome and alcohol abuse]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2025;(3):65-79. Russian

Abstract

In this cross-sectional retrospective study with the aim of studying the genetic basis of alcohol use disorder (AUD), a genome-wide association study was conducted in a cohort of patients with AUD and in a cohort of individuals who abuse alcohol but do not have the diagnosis and clinical signs of AUD. Clustering of the results of the genome-wide association study was performed to identify common genetic mechanisms that contribute to the development of addictive behavior. As a result, genetic polymorphisms associated with both AUD and alcohol abuse were found. Given that genetics determines only part of the risk, we analyzed the main socio-demographic factors traditionally associated with AUD. The obtained results demonstrate that certain genetic factors associated with a clinical diagnosis of AUD distinguish this group from individuals who abuse alcohol but do not have the diagnosis.

Keywords alcohol dependence syndrome; search for genome-wide associations; alcohol abuse; genetic predisposition; ALDH2

References

1. de Moor MHM, Vink JM, van Beek JHDA, et al. Heritability of problem drinking and the genetic overlap with personality in a general population sample. Front Genet. 2011;2:76. DOI: 10.1242/dmm.049601 2. Chen C-H, Kraemer BR, Mochly-Rosen D. ALDH2 variance in disease and populations. Dis Model Mech. 2022;15(6). DOI: 10.1242/dmm.049601 3. Deak JD, Levey DF, Wendt FR, et al. Genome-Wide Investigation of Maximum Habitual Alcohol Intake in US Veterans in Relation to Alcohol Consumption Traits and Alcohol Use Disorder. JAMA Netw Open. 2022;5(10):e2238880. 4. Anokhina IP. [Pleasure and pathogenesis of addictive diseases]. Voprosy narkologii [Journal of Addiction Problems]. 2017;(2-3):15–41. (In Russ.) 5. Kibitov AO. Etiologiya i patogenez boleznei zavisimosti: dofaminovaya neiromediatornaya sistema. In: Geneticheskie aspekty narkologicheskikh zabolevanii. Moscow; 2021. Р. 17. (In Russ.) 6. Kibitov AO, Kuznetsova MN. [Molecular mechanism of alcohol addiction: the role of glutamate receptors of the brain]. Voprosy narkologii [Journal of Addiction Problems]. 2019;5(176):58–98. (In Russ.) 7. Morozova TV, Mackay TFC, Anholt RRH. Genetics and genomics of alcohol sensitivity. Mol Genet Genomics. 2014;289(3):253–69. DOI: 10.1007/s00438-013-0808-y 8. Kibitov AO, Nikolishin AE, Trusova AV, et al. [A first Russian genome-wide association study of alcohol dependence: a project of the Russian national consortium for psychiatric genetics]. Voprosy narkologii [Journal of Addiction Problems]. 2019;181(10):87–115. (In Russ.) 9. Hoang T, Smith MD, Jelokhani-Niaraki M. Toward understanding the mechanism of ion transport activity of neuronal uncoupling proteins UCP2, UCP4, and UCP5. Biochemistry. 2012;51(19):4004–14. DOI: 10.1021/bi3003378 10. Ehrnrooth A, Gluschkoff K, Jokela M, et al. Sociodemographic risk factors for the persistence of harmful alcohol use: a pooled analysis of prospective cohort studies. Soc Psychiatry Psychiatr Epidemiol. 2024. DOI: 10.1007/s00127-024-02654-w 11. Zhou H, Kember RL, Deak JD, et al. Multi-ancestry study of the genetics of problematic alcohol use in over 1 million individuals. Nat Med. 2023;29(1229):3184–92. DOI: 10.1038/s41591-023-02653-5 12. bcl2fastq and bcl2fastq2 Conversion Software Downloads. URL: https://emea.support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software/downloads.html (accessed on: 07.12.2024). 13. Sequencing Analysis Viewer Support. URL: https://support.illumina.com/sequencing/sequencing_software/sequencing_analysis_viewer_sav.html (accessed on: 07.12.2024). 14. Babraham bioinformatics – FastQC A quality control tool for high throughput sequence data. URL: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on: 07.12.2024). 15. GDC reference files. URL: https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files (accessed on: 07.12.2024). 16. DRAGEN Secondary Analysis. URL: https://www.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html (accessed on: 07.12.2024). 17. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. 18. Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for ge-nomes and exomes. Bioinformatics. 2018;34(5):867–8. 19. Kim S, Scheffler K, Halpern AL, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods. 2018;15(8):591–4. 20. «Picard Toolkit». Broad Institute, GitHub Repository. 2019. URL: https://broadinstitute.github.io/picard/ (accessed on: 07.12.2024). 21. McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(117):122. 22. Toma C, Gómez-Blanco JI, Martínez-Jiménez M, et al. F16. The purine metabolism in mental illnesses: The role of the cancer gene Fhit across psychiatric diseases. Eur Neuropsychopharmacol. 2023;75:S228. DOI: 10.1016/j.euroneuro.2023.08.404 23. Howard DM, Adams MJ, Clarke T-K, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22(3):343–52. DOI: 10.1038/s41593-018-0326-7 24. Saunders GRB, Wang X, Chen F, et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature. 2022;612(7941):720–4. DOI: 10.1038/s41586-022-05477-4 25. Marbach F, Stoyanov G, Erger F, et al. Variants in PRKAR1B cause a neurodevelopmental disorder with autism spectrum disorder, apraxia, and insensitivity to pain. Genet Med. 2021;23(23):1465–73. DOI: 10.1038/s41436-021-01152-7 26. Tamaddon-Jahromi S, Kanamarlapudi V. AGAP1. Encyclopedia of Signaling Molecules. Cham: Springer International Publishing; 2018. P. 239–44. 27. Nemmer JM, Kuchner M, Datsi A, et al. Interleukin-31 Signaling Bridges the Gap Between Immune Cells, the Nervous System and Epithelial Tissues. Front Med. 2021;8:639097. DOI: 10.3389/fmed.2021.639097 28. Crews FT. Immune function genes, genetics, and the neurobiology of addiction. Alcohol Research: Current Reviews. 2012;34(3):355–61. 29. Deng IB, Follett J, Bu M, et al. DNAJC12 in Monoamine Metabolism, Neurodevelopment, and Neurodegeneration. Mov Disord. 2024;39(2):249–58. DOI: 10.1101/2023.06.22.23291747 30. Zhou H, Sealock JM, Sanchez-Roige S, et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat Neurosci. 2020;23(7):809–18. DOI: 10.1038/s41593-020-0643-5 31. Kang J, Deng Y-T, Wu B-S, et al. Whole exome sequencing analysis identifies genes for alcohol consumption. Nat Commun. 2024;15(1):5777. DOI: 10.1038/s41467-024-50132-3 32. Weißflog L, Scholz C-J, Jacob CP, et al. KCNIP4 as a candidate gene for personality disorders and adult ADHD. Eur Neuropsychopharmacol. 2013;23(6):436–47. DOI: 10.1016/j.euroneuro.2012.07.017

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM