Brain-derived Neurotrophic Factor: Structure and Interaction with Receptors
Suggested citation:
Fominova UN, Gurina OI, Shepeleva II, et al. [Brain-derived Neurotrophic Factor: Structure and Interaction with Receptors]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2018;(4):64-72. Russian
This scientific review, pursuing the objective of investigating the structure of the brain-derived
neurotrophic hormone, as well as the interaction of its isoforms with the main TrkB and p75NTR receptors, submits the analysis of Russian and foreign publications, pertaining to this topic. We also pay attention to the main mechanisms of signaling pathways activation in the course of the interaction between proteins and receptors. We describe the possible role of TrkB and p75NTR in the pathogenesis of depression, looking at the possible influence of the misbalance of these receptors on the development of this disorder. This determines the novelty of this work and the strategy for further investigation of the mechanisms of interconnection between the brain-derived neurotrophic factor and depression. We had analyzed over 200 sources, 40 of which have been included into the review.
Keywords brain-derived neurotrophic factor; receptors; pro-BDNF; m-BDNF
1. World Health Organization. http://www.who.int/publications/list/9244562820/ru. 2. Shansky RM, Lipps J. Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex. Front Hum Neurosci. 2013;7:123–31. PMID: 23576971. DOI: 10.3389/fnhum.2013.00123. 3. Brisa SF, Marc LM, Cristiano AK, et al. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med. 2015;13:289–311. PMID: 26621529. DOI: 10.1186/s12916-015-0529-7. 4. Leibrock J, Lottspeich F, Hohn A. Molecular cloning and expression of brain-derived neurotrophic factor. Nature. 1989;341(6238):149–52. PMID: 2779653. DOI: 10.1038/341149a0. 5. Gomazkov OA. Neurotrophins: The therapeutic potential and concept of minipeptides. Neurochemical Journal. 2012;6(3):163–172. Russian. DOI: 10.1134/S1819712412030075. 6. Cattaneo A, Cattane N, Begni V. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl. Psychiatry. 2016; 6(11):e958. PMID: 27874848. DOI: 10.1038/tp.2016.214. 7. Karpova NN. Role of BDNF epigenetics in active tydependent neuronal plasticity. Neuropharmacology. 2014;76:709–18. PMID: 23587647. DOI: 10.1016/j.neuropharm.2013.04.002. 8. Benarroch EE. Brainderived neurotrophic factor: Regulation, effects, and potential clinical relevance. Neurology. 2015;84(16):1693–4. PMID: 25817841. DOI: 10.1212/WNL.0000000000001507. 9. Foltran RB, Diaz SL. BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem. 2016;138(2):204–21. PMID: 27167299. DOI: 10.1111/jnc.13658. 10. Sasi M, Vignoli B, Canossa M, et al. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch Eur J Physiol. 2017;469:593–610. DOI: 10.1007/s00424-017-1964-4. 11. Kowianski P, Lietzau G, Czuba E. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Sinaptic Plasticity. Cell Mol Neurobiol. 2017;38(3):579–93. DOI: 10.1007/s10571-017-0510-4. 12. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci. 2005;6(8):603–14. PMID: 16062169. DOI: 10.1038/nrn1726. 13. Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology and therapy. J Neurochem. 2016;139(Suppl. 2):91–114. PMID: 26525923. DOI: 10.1111/jnc.13415. 14. Wong J, Higgins M, Halliday G, et al. Amyloid selectively modulates neuronal TrkB alternative transcript expression with implications for Alzheimer’s disease. Neuroscience. 2012;210:363–74. DOI: 10.1016/j.neuroscience.2012.02.037. 15. Verhagen M, van der Meij A, van Deurzen PA, et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry. 2010;3:260–71. 16. Dechant G, Barde YA. The neurotrophin receptor p75NTRNTR: novel functions and implications for diseases of the nervous system. Nat Neurosci. 2002;5(11):1131–6. PMID: 12404007. DOI: 10.1038/nn1102-1131. 17. Roux PP, Colicos MA, Barker PA, et al. p75NTR neurotrophin receptor expression is induced in apoptotic neurons after seizure. J Neurosci. 1999;19(16):6887–96. PMID: 10436046. 18. Gonzalez A, Moya-Alvarado G, Gonzalez-Billaut C, et al. Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor (BDNF). Cytoskeleton (Hoboken). 2016;73(10):612–28. PMID: 27223597. DOI: 10.1002/cm.21312. 19. Frisén J, Verge VM, Fried K. Characterization of glial trkB receptors: differential response to injury in the central and peripheral nervous systems. Proc Natl Acad Sci USA. 1993;90:4971–5. 20. Vilar M, Mira H. Regulation of neurogenesis by neurotrophins during adulthood: expected and unexpected roles. Front Neurosci. 2016;10(26):121–32. 21. Gomes JR, Costa JT, Melo CV, et al. Excitotoxicity downregulates TrkB.FL signaling and upregulates the neuroprotective truncated TrkB receptors in cultured hippocampal and striatal neurons. J Neurosci. 2012;32:4610–22. DOI: 10.1523/JNEUROSCI.0374-12.2012. 22. Vidaurre OG, Gascon S, Deogracias R, et al. Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity. Cell Death Dis. 2012;3:e256. DOI: 10.1038/cddis.2011.143. 23. Baydyuk M, Nguyen MT, Xu B. Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp Neurol. 2011;228:118–25. DOI: 10.1016/j.expneurol.2010.12.018. 24. Sakharnova TA, Vedunova MV, Mukhina IV. [Brain-Derived Neurotrophic Factor (BDNF) and its role in the functioning of the central nervous system]. Neurochemical Journal. 2012;6(4):251–9. Russian. DOI: 10.1134/s1819712412030129. 25. Maussion G, Yang J, Yerko V, et al. Regulation of a truncated form of tropomyosin-related kinase B (TrkB) by Hsa-miR-185* in frontal cortex of suicide completers. PLoS ONE. 2012;7:e39301. DOI: 10.1371/journal.pone.0039301. 26. Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond Biol Sci. 2006;361(1473):1545–64. PMID: 16939974. DOI: 10.1098/rstb.2006.1894. 27. Yang J, Harte-Hargrove LC, Siao CJ. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 2014;7(3):796–806. PMID: 24746813. DOI: 10.1016/j.celrep.2014.03.040. 28. RCSB PDB, Protein data bank. http://www.rcsb.org/pdb/ngl/ngl.do?pdbid=1B8M&bionumber=1. 29. Grande I, Fries GR, Kunz M, et al. The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig. 2010;7(4):243–50. DOI: 10.4306/pi.2010.7.4.243. 30. Madara JC, Levine ES. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. J Neurophysiol. 2008;100(6):3175–84. DOI: 10.1152/jn.90880.2008. 31. Rose CR, Blum R, Kafitz KW. From modulator to mediator: rapid effects of BDNF on ion channels. Bio Essays. 2004;26(11):1185–94. DOI: 10.1002/bies.20118. 32. Nong Y, Huang YQ, Salter MW. NMDA receptors are movin’ in. Curr Opin Neurobiol. 2004;14(3):353–61. DOI: 10.1016/j.conb.2004.05.001. 33. Caldeira MV, Melo CV, Pereira DB. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci. 2007;35(2):208–19. PMID: 17428676. DOI: 10.1016/j.mcn.2007.02.019. 34. Mizoguchi Y, Ishibashi H, Nabekura J. The action of BDNF on GABAA currents changes from potentiating to suppressing during maturation of rat hippocampal CA1 pyramidal neurons. J Physiol. 2003;548:703–9. PMID: 12640007. 35. Hensch TK, Stryker MP. Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science. 2004;303:1678–81. DOI: 10.1126/science.1091031. 36. Tanaka T, Saito H, Matsuki N. Inhibition of GABAa synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J Neurosci. 1997;17:2959–66. PMID: 9096132. 37. Almeida RD, Manadas BJ, Melo CV, et al. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell death Differ. 2005;12(10):1329–43. PMID: 15905876. DOI: 10.1038/sj.cdd.4401662. 38. Hashimoto R, Takei N, Shimazu K. Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology. 2002;43(7):1173–9. PMID: 12504924. 39. Downward J. PI3-kinase, Akt and cell survival. Semin Cell Dev Biol. 2004;15(2):177–82. PMID: 15209377. 40. Nguyen TL, Kim CK, Cho JH. Neuroprotection signaling pathway of nerve growth factor and brain-derived neurotrophic factor against staurosporine induced apoptosis in hippocampal H19-7 cells. Exp Mol Med. 2010;42:583–95. DOI: 10.3858/emm.2010.42.8.060.
DOI: http://dx.doi.org/10.24411/1560-957X-2018-1%25x
Article Metrics
Metrics powered by PLOS ALM