Нейротрофический фактор головного мозга: структура и взаимодействие с рецепторами

Полный текст:
Читать

Рекомендуемое оформление библиографической ссылки:

Фоминова У.Н., Гурина О.И., Шепелева И.И., Попова Т.Н., Кекелидзе З.И., Чехонин В.П. Нейротрофический фактор головного мозга: структура и взаимодействие с рецепторами // Российский психиатрический журнал. 2018. №4. С. 64-72.

Аннотация

В научном обзоре с целью исследования структуры нейротрофического фактора головного
мозга, а также взаимодействия его изоформ с основными рецепторами – TrkB и p75NTR –
проведён анализ российских и зарубежных публикаций, связанных с данной темой. Также
уделено внимание основным механизмам активации сигнальных путей при взаимодействии
белка с рецепторами, описана возможная роль TrkB и p75NTR в патогенезе депрессии,
рассмотрено вероятное влияние дисбаланса этих рецепторов на развитие данного
заболевания. Это определяет новизну работы и стратегию дальнейшего исследования
механизмов взаимосвязи нейротрофического фактора головного мозга и депрессии.
Проанализировано более 200 источников, 40 из них включены в обзор.

Ключевые слова нейротрофический фактор головного мозга (BDNF), рецепторы, pro-BDNF, m-BDNF

Литература

1. World Health Organization. http://www.who.int/publications/list/9244562820/ru. 2. Shansky RM, Lipps J. Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex. Front Hum Neurosci. 2013;7:123–31. PMID: 23576971. DOI: 10.3389/fnhum.2013.00123. 3. Brisa SF, Marc LM, Cristiano AK, et al. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med. 2015;13:289–311. PMID: 26621529. DOI: 10.1186/s12916-015-0529-7. 4. Leibrock J, Lottspeich F, Hohn A. Molecular cloning and expression of brain-derived neurotrophic factor. Nature. 1989;341(6238):149–52. PMID: 2779653. DOI: 10.1038/341149a0. 5. Gomazkov OA. Neurotrophins: The therapeutic potential and concept of minipeptides. Neurochemical Journal. 2012;6(3):163–172. Russian. DOI: 10.1134/S1819712412030075. 6. Cattaneo A, Cattane N, Begni V. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl. Psychiatry. 2016; 6(11):e958. PMID: 27874848. DOI: 10.1038/tp.2016.214. 7. Karpova NN. Role of BDNF epigenetics in active tydependent neuronal plasticity. Neuropharmacology. 2014;76:709–18. PMID: 23587647. DOI: 10.1016/j.neuropharm.2013.04.002. 8. Benarroch EE. Brainderived neurotrophic factor: Regulation, effects, and potential clinical relevance. Neurology. 2015;84(16):1693–4. PMID: 25817841. DOI: 10.1212/WNL.0000000000001507. 9. Foltran RB, Diaz SL. BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem. 2016;138(2):204–21. PMID: 27167299. DOI: 10.1111/jnc.13658. 10. Sasi M, Vignoli B, Canossa M, et al. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch Eur J Physiol. 2017;469:593–610. DOI: 10.1007/s00424-017-1964-4. 11. Kowianski P, Lietzau G, Czuba E. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Sinaptic Plasticity. Cell Mol Neurobiol. 2017;38(3):579–93. DOI: 10.1007/s10571-017-0510-4. 12. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci. 2005;6(8):603–14. PMID: 16062169. DOI: 10.1038/nrn1726. 13. Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology and therapy. J Neurochem. 2016;139(Suppl. 2):91–114. PMID: 26525923. DOI: 10.1111/jnc.13415. 14. Wong J, Higgins M, Halliday G, et al. Amyloid selectively modulates neuronal TrkB alternative transcript expression with implications for Alzheimer’s disease. Neuroscience. 2012;210:363–74. DOI: 10.1016/j.neuroscience.2012.02.037. 15. Verhagen M, van der Meij A, van Deurzen PA, et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol Psychiatry. 2010;3:260–71. 16. Dechant G, Barde YA. The neurotrophin receptor p75NTRNTR: novel functions and implications for diseases of the nervous system. Nat Neurosci. 2002;5(11):1131–6. PMID: 12404007. DOI: 10.1038/nn1102-1131. 17. Roux PP, Colicos MA, Barker PA, et al. p75NTR neurotrophin receptor expression is induced in apoptotic neurons after seizure. J Neurosci. 1999;19(16):6887–96. PMID: 10436046. 18. Gonzalez A, Moya-Alvarado G, Gonzalez-Billaut C, et al. Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor (BDNF). Cytoskeleton (Hoboken). 2016;73(10):612–28. PMID: 27223597. DOI: 10.1002/cm.21312. 19. Frisén J, Verge VM, Fried K. Characterization of glial trkB receptors: differential response to injury in the central and peripheral nervous systems. Proc Natl Acad Sci USA. 1993;90:4971–5. 20. Vilar M, Mira H. Regulation of neurogenesis by neurotrophins during adulthood: expected and unexpected roles. Front Neurosci. 2016;10(26):121–32. 21. Gomes JR, Costa JT, Melo CV, et al. Excitotoxicity downregulates TrkB.FL signaling and upregulates the neuroprotective truncated TrkB receptors in cultured hippocampal and striatal neurons. J Neurosci. 2012;32:4610–22. DOI: 10.1523/JNEUROSCI.0374-12.2012. 22. Vidaurre OG, Gascon S, Deogracias R, et al. Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity. Cell Death Dis. 2012;3:e256. DOI: 10.1038/cddis.2011.143. 23. Baydyuk M, Nguyen MT, Xu B. Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp Neurol. 2011;228:118–25. DOI: 10.1016/j.expneurol.2010.12.018. 24. Sakharnova TA, Vedunova MV, Mukhina IV. [Brain-Derived Neurotrophic Factor (BDNF) and its role in the functioning of the central nervous system]. Neurochemical Journal. 2012;6(4):251–9. Russian. DOI: 10.1134/s1819712412030129. 25. Maussion G, Yang J, Yerko V, et al. Regulation of a truncated form of tropomyosin-related kinase B (TrkB) by Hsa-miR-185* in frontal cortex of suicide completers. PLoS ONE. 2012;7:e39301. DOI: 10.1371/journal.pone.0039301. 26. Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond Biol Sci. 2006;361(1473):1545–64. PMID: 16939974. DOI: 10.1098/rstb.2006.1894. 27. Yang J, Harte-Hargrove LC, Siao CJ. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep. 2014;7(3):796–806. PMID: 24746813. DOI: 10.1016/j.celrep.2014.03.040. 28. RCSB PDB, Protein data bank. http://www.rcsb.org/pdb/ngl/ngl.do?pdbid=1B8M&bionumber=1. 29. Grande I, Fries GR, Kunz M, et al. The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig. 2010;7(4):243–50. DOI: 10.4306/pi.2010.7.4.243. 30. Madara JC, Levine ES. Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. J Neurophysiol. 2008;100(6):3175–84. DOI: 10.1152/jn.90880.2008. 31. Rose CR, Blum R, Kafitz KW. From modulator to mediator: rapid effects of BDNF on ion channels. Bio Essays. 2004;26(11):1185–94. DOI: 10.1002/bies.20118. 32. Nong Y, Huang YQ, Salter MW. NMDA receptors are movin’ in. Curr Opin Neurobiol. 2004;14(3):353–61. DOI: 10.1016/j.conb.2004.05.001. 33. Caldeira MV, Melo CV, Pereira DB. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci. 2007;35(2):208–19. PMID: 17428676. DOI: 10.1016/j.mcn.2007.02.019. 34. Mizoguchi Y, Ishibashi H, Nabekura J. The action of BDNF on GABAA currents changes from potentiating to suppressing during maturation of rat hippocampal CA1 pyramidal neurons. J Physiol. 2003;548:703–9. PMID: 12640007. 35. Hensch TK, Stryker MP. Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science. 2004;303:1678–81. DOI: 10.1126/science.1091031. 36. Tanaka T, Saito H, Matsuki N. Inhibition of GABAa synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J Neurosci. 1997;17:2959–66. PMID: 9096132. 37. Almeida RD, Manadas BJ, Melo CV, et al. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell death Differ. 2005;12(10):1329–43. PMID: 15905876. DOI: 10.1038/sj.cdd.4401662. 38. Hashimoto R, Takei N, Shimazu K. Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology. 2002;43(7):1173–9. PMID: 12504924. 39. Downward J. PI3-kinase, Akt and cell survival. Semin Cell Dev Biol. 2004;15(2):177–82. PMID: 15209377. 40. Nguyen TL, Kim CK, Cho JH. Neuroprotection signaling pathway of nerve growth factor and brain-derived neurotrophic factor against staurosporine induced apoptosis in hippocampal H19-7 cells. Exp Mol Med. 2010;42:583–95. DOI: 10.3858/emm.2010.42.8.060.



DOI: http://dx.doi.org/10.24411/1560-957X-2018-1%25x

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM