Concepts of the level violation of regulatory processes in schizophrenia: from probabilistic forecasting to predictive coding
Suggested citation:
Samylkin DV, Tkachenko AA. [Concepts of the level violation of regulatory processes in schizophrenia: from probabilistic forecasting to predictive coding]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2020;(5):34-46. Russian
The purpose of this review is to analyze scientific ideas about the regularities of regulatory processes in schizophrenia. Various pathogenetic theories of schizophrenia have been traced, from attempts to isolate the “main disorder” to modern neurobiological concepts. It is shown that the main link in the mechanism of development of psychopathological symptoms, neurophysiological and pathopsychological phenomena, i.e. manifested at different levels of the organization of mental processes, can be considered a violation of the actualization of previous experience.
Keywords self-regulation; cognitive disorders; salience dysregulation; probabilistic prediction; corollary discharge; efferent copy; predictive coding; disconnection
1. Tkachenko AA. [The subject of forensic psychiatric examination and translational medicine]. Psihicheskoe zdorov'e [Mental Health]. 2016;(11):3–14. Russian. 2. Pavlov IP. Dvadcatiletnij opyt ob'ektivnogo izuchenija vysshej nervnoj dejatel'nosti (povedenija) zhivotnyh. Moscow; 1973. p. 370. Russian. 3. Meynen G. A neurolaw perspective on psychiatric assessments of criminal responsibility: Decision-making, mental disorder, and the brain. Int J Law Psychiatry. 2013;36(2):93–9. DOI: https://doi.org/10.1016/j.ijlp.2013.01.001 4. Spranger TM. International Neurolaw. A Comparative Analysis. In: International Neurolaw: A Comparative Analysis. Springer; 2012. 412 p. 5. Tkachenko AA, Demidova LYu. [Development of the general model of self-regulation in forensic psychiatry. Paper 1. The principle of isomorphism]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2018;(5):19–28. Russian. 6. Shmukler AB. Problema shizofrenii v sovremennyh issledovanijah: dostizhenija i diskussionnye voprosy. Moscow; 2011. 83 p. Russian. 7. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res. 2009;110(1–3):1–23. DOI: https://doi.org/10.1016/j.schres.2009.03.005 8. Gold JM, et al. Forms of Memory Failure in Schizophrenia. J Abnorm Psychol. 1992;101(3):487–94. DOI: https://doi.org/10.1037//0021-843x.101.3.487 9. Fioravanti M, et al. A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychol Rev. 2005;15(2):73–95. DOI: https://doi.org/10.1007/s11065-005-6254-9 10. Gold S, et al. Longitudinal study of cognitive function in first-episode and recent-onset schizophrenia. Am J Psychiatry. 1999;156(9):1342–8. DOI: https://doi.org/10.1176/ajp.156.9.1342 11. Wright IC, et al. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry. 2000;157(1):16–25. DOI: https://doi.org/10.1176/ajp.157.1.16 12. Banaj N, et al. Cognitive and psychopathology correlates of brain white/grey matter structure in severely psychotic schizophrenic inpatients. Schizophr Res Cogn Elsevier. 2018;(12):29–36. DOI: https://doi.org/10.1016/j.scog.2018.02.001 13. Walterfang M, et al. White matter volume changes in people who develop psychosis. Br J Psychiatry. 2008;193(3):210–5. DOI: https://doi.org/10.1192/bjp.bp.107.043463 14. Burns J, et al. Structural disconnectivity in schizophrenia: A diffusion tensor magnetic resonance imaging study. Br J Psychiatry. 2003;(182):439–43. 15. Berman KF, Illowsky BP, Weinberger DR. Physiological Dysfunction of Dorsolateral Prefrontal Cortex in Schizophrenia: IV. Further Evidence for Regional and Behavioral Specificity. Arch Gen Psychiatry. 1988;45(7):616–22. DOI: https://doi.org/10.1001/archpsyc.1988.01800310020002 16. Andreasen NC, et al. Schizophrenia and cognitive dysmetria: A positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci U. S. A. 1996;93(18):9985–90. DOI: https://doi.org/10.1073/pnas.93.18.9985 17. Addington J, Addington D. Neurocognitive and social functioning in schizophrenia: a 2.5 year follow-up study. Schizophr Res. 2000;(44):47–56. DOI: https://doi.org/10.1016/s0920-9964(99)00160-7 18. Green MF, et al. Social cognition in schizophrenia: An NIMH workshop on definitions, assessment, and research opportunities. Schizophr Bull. 2008;34(6):1211–20. DOI: https://doi.org/10.1093/schbul/sbm145 19. Shmukler AB, Sjunjakov TS. [Cognitive disorders in patients with schizophrenia]. Sovremennaja Terapija Psihicheskih Rasstrojstv [Modern Therapy Of Mental Disorders]. 2018;(4):8–17. Russian. DOI: https://doi.org/10.21265/psyph.2018.47.21772 20. Green MF, Horan WP, Lee J. [Non-social and social cognitive functions in schizophrenia: current state and directions of development]. Vsemirnaja psihiatrija [World Psychiatry]. 2019;18(2):150–66. Russian. 21. Gurovich IJa, Shmukler AB, Zajceva JuS. Nejrokognitivnyj deficit i ego dinamika u bol'nyh na nachal'nyh jetapah shizofrenii i shizoaffektivnogo rasstrojstva. In: Nasledie A.R. Lurii v sovremennom nauchnom i kul'turno-istoricheskom kontekste. Moscow; 2012. p. 177–83. Russian. 22. Cohen JD, Servan-Schreiber D. Context, Cortex, and Dopamine: A Connectionist Approach to Behavior and Biology in Schizophrenia. Psychol Rev. 1992;99(1):45–77. DOI: https://doi.org/10.1037/0033-295x.99.1.45 23. Kapur S. Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160(1):13–23. DOI: https://doi.org/10.1176/appi.ajp.160.1.13 24. Jensen J, Kapur S. Salience and psychosis: Moving from theory to practise. Psychol Med. 2009;39(2):197–8. DOI: https://doi.org/10.1017/S0033291708003899 25. Van Os J. A salience dysregulation syndrome. Br J Psychiatry. 2009;194(2):101–3. DOI: https://doi.org/10.1192/bjp.bp.108.054254 26. Kronfeld A. Sovremennye problemy uchenija o shizofrenii. In: Stanovlenie sindromologii i koncepcija shizofrenii. Moscow; 2006. p. 452–505. Russian. 27. Bleuler E. Rukovodstvo po psihiatrii. Berlin; 1920. 542 p. Russian. 28. Zalmanzon AN. K voprosu ob osnovnom rasstrojstve pri shizofrenii. In: Trudy psihiatricheskoj kliniki I MMI. Moscow; 1934. Issue 5. p. 60–86. Russian. 29. Husserl E. Idei k chistoj fenomenologii. In: Tom 1. Obshhee vvedenie v chistuju fenomenologiju. Moscow: Akademicheskij Proekt; 1999. 336 p. Russian. 30. Kronfeld A. Problemy sindromologii i nozologii v sovremennoj psihiatrii. In: Stanovlenie sindromologii i koncepcija shizofrenii. Moscow; 2006. p. 37–221. Russian. 31. Berce J. Vychlenenie shizofrenicheskih pervichnyh simptomov. Nezavisimyj psihiatricheskij zhurnal [Independent Psychiatric Journal]. 2010;(4):44–54. Russian. 32. Tkachenko AA. [About the history of the creation of the pathopsychological concept of schizophrenia (to publish the early works of Yu. F. Polyakov)]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2014;(3):79–92. Russian. 33. Poljakov JuF. Patologija poznavatel'noj dejatel'nosti pri shizofrenii. Moscow; 1974. 168 p. Russian. 34. Bernshtejn NA. Ocherki po fiziologii dvizhenij i fiziologii aktivnosti. Moscow; 1966. 349 p. Russian. 35. Fejgenberg IM. Narushenie verojatnostnogo prognozirovanija pri shizofrenii. In: Shizofrenija i verojatnostnoe prognozirovanie. Moscow; 1973. p. 5–19. Russian. 36. Anohin PK. Ocherki po fiziologii funkcional'nyh sistem. Moscow; 1975. 447 p. Russian. 37. Von Holst E, Mittelstaedt H. Das Reafferenzprinzip. Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften. 1950;(37):464–76. 38. Sperry RW. Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol. 1950;43(6):482–9. 39. Helmholtz H. Treatise on Physiological Optics, III: The Perceptions of Vision. Science. 1925;61(1574):235–6. 40. Thaker GK, et al. Smooth pursuit eye movements to extraretinal motion signals: Deficits in relatives of patients with schizophrenia. Arch Gen Psychiatry. 1998;55(9):830–6. 41. Hong LE, Avila MT, Thaker GK. Response to unexpected target changes during sustained visual tracking in schizophrenic patients. Exp Brain Res. 2005;165(1):125–31. DOI: https://doi.org/10.1007/s00221-005-2276-z 42. Thakkar KN, Rolfs M. Disrupted Corollary Discharge in Schizophrenia: Evidence From the Oculomotor System. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(9):773–81. DOI: https://doi.org/10.1016/j.bpsc.2019.03.009 43. Polli FE, et al. Schizophrenia patients show intact immediate error-related performance adjustments on an antisaccade task. Schizophr Res. 2006;82(2–3):191–201. DOI: https://doi.org/10.1016/j.schres.2005.10.003 44. Thakkar KN, Diwadkar VA, Rolfs M. Oculomotor Prediction: A Window into the Psychotic Mind. Trends Cogn Sci. 2017;21(5):344–56. DOI: https://doi.org/10.1016/j.tics.2017.02.001 45. Sommer MA, Wurtz RH. What the Brain Stem Tells the Frontal Cortex. I. Oculomotor Signals Sent from Superior Colliculus to Frontal Eye Field Via Mediodorsal Thalamus. J Neurophysiol. 2004;91(3):1381–402. DOI: https://doi.org/10.1152/jn.00738.2003 46. Sommer MA, Wurtz RH. What the Brain Stem Tells the Frontal Cortex. II. Role of the SC-MD-FEF Pathway in Corollary Discharge. J Neurophysiol. 2004;91(3):1403–23. DOI: https://doi.org/10.1152/jn.00740.2003 47. Sherman SM. Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience. Nature Publishing Group. 2016;19(4):533–41. DOI: https://doi.org/10.1038/nn.4269 48. Yao B, et al. Structural thalamofrontal hypoconnectivity is related to oculomotor corollary discharge dysfunction in schizophrenia. J Neurosci. 2019;39(11):2102–13. DOI: https://doi.org/10.1523/JNEUROSCI.1473-18.2019 49. Frith CD. The positive and negative symptoms of schizophrenia reflect impairments in the perception and initiation of action. Psychol Med. 1987;17(3):631–48. DOI: https://doi.org/10.1017/s0033291700025873 50. Ford JM, et al. Synch before you speak: Auditory hallucinations in schizophrenia. Am J Psychiatry. 2007;164(3):458–66. DOI: https://doi.org/10.1176/ajp.2007.164.3.458 51. Ford JM, Roach BJ, Mathalon DH. Assessing corollary discharge in humans using noninvasive neurophysiological methods. Nat Protoc. 2010;5(6):1160–8. DOI: https://doi.org/10.1038/nprot.2010.67 52. Ford JM, et al. Out-of-Synch and Out-of-Sorts: Dysfunction of Motor-Sensory Communication in Schizophrenia. Biol Psychiatry. 2008;63(8):736–43. DOI: https://doi.org/10.1016/j.biopsych.2007.09.013 53. Feinberg I. Efference copy and corollary discharge: implications for thinking and its disorders. Schizophr Bull. 1978;4(4):636–40. DOI: https://doi.org/10.1093/schbul/4.4.636 54. Green MF, Kinsbourne M. Subvocal activity and auditory hallucinations: Clues for behavioral treatments? Schizophr Bull. 1990;16(4):617–25. DOI: https://doi.org/10.1093/schbul/16.4.617 55. Ford JM, Mathalon DH. Corollary discharge dysfunction in schizophrenia: Can it explain auditory hallucinations? Int J Psychophysiol. 2005;58(2–3):179–89. DOI: https://doi.org/10.1016/j.ijpsycho.2005.01.014 56. Barch DM, Dowd EC. Goal representations and motivational drive in schizophrenia: The role of prefrontal-striatal interactions. Schizophr Bull. 2010;36(5):919–34. DOI: https://doi.org/10.1093/schbul/sbq068 57. Cannon TD, et al. A prospective cohort study of neurodevelopmental processes in the genesis and epigenesis of schizophrenia. Dev Psychopathol. 1999;11(3):467–85. 58. Gallagher S. Ever since William James Philosophical conceptions of the self: implications for cognitive science. Trends Cogn Sci. 2000;4(1):14–21. 59. Van der Weiden A, Prikken M, van Haren NEM. Self-other integration and distinction in schizophrenia: A theoretical analysis and a review of the evidence. Neurosci Biobehav Rev. 2015;(57):220–37. DOI: https://doi.org/10.1016/j.neubiorev.2015.09.004 60. Moore JW, Fletcher PC. Sense of agency in health and disease: A review of cue integration approaches. Conscious Cogn. 2012;21(1):59–68. DOI: https://doi.org/10.1016/j.concog.2011.08.010 61. Feinberg I, Guazzelli M. Schizophrenia – A disorder of the corollary discharge systems that integrate the motor systems of thought with the sensory systems of consciousness. Br J Psychiatry. 1999;(174):196–204. DOI: https://doi.org/10.1192/bjp.174.3.196 62. Corlett PR, Frith CD, Fletcher PC. From drugs to deprivation: A Bayesian framework for understanding models of psychosis. Psychopharmacology (Berl). 2009;206(4):515–30. DOI: https://doi.org/10.1007/s00213-009-1561-0 63. Ford JM, Mathalon DH. Efference Copy, Corollary Discharge, Predictive Coding, and Psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(9):764–7. DOI: https://doi.org/10.1016/j.bpsc.2019.07.005 64. Srinivasan MV, Laughlin SB, Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc. Ser B Biol Sci. 1982;(216):427–59. DOI: https://doi.org/10.1098/rspb.1982.0085 65. Rao RPN, Ballard DH. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2(1):79–87. DOI: https://doi.org/10.1038/4580 66. Friston K. Hierarchical models in the brain. PLoS Comput Biol. 2008;4(11):e1000211. DOI: https://doi.org/ https://doi.org/10.1371/journal.pcbi.1000211 67. Bastos AM, et al. Canonical Microcircuits for Predictive Coding. Neuron. 2012;76(4):695–711. DOI: https://doi.org/10.1016/j.neuron.2012.10.038 68. Friston K, Kilner J, Harrison LA. free energy principle for the brain. J Physiol. 2006;100(1–3):70–87. DOI: https://doi.org/10.1016/j.jphysparis.2006.10.001 69. Friston K. The free-energy principle: A unified brain theory? Nature Reviews Neuroscience. 2010;11(2):127–38. DOI: https://doi.org/10.1038/nrn2787 70. Friston K. A theory of cortical responses. Philos Trans R Soc. B Biol Sci. 2005;360(1456):815–36. DOI: https://doi.org/10.1098/rstb.2005.1622 71. Stephan KE, Baldeweg T, Friston KJ. Synaptic Plasticity and Dysconnection in Schizophrenia. Biol Psychiatry. 2006;59(10):929–39. DOI: https://doi.org/10.1016/j.biopsych.2005.10.005 72. Baldeweg T. Repetition effects to sounds: evidence for predictive coding in the auditory system.Trends Cogn Sci. 2006;10(3):93–4. DOI: https://doi.org/10.1016/j.tics.2006.01.010 73. Umbricht D, Krljesb S. Mismatch negativity in schizophrenia: A meta-analysis. Schizophr Res. 2005;76(1):1–23. DOI: https://doi.org/10.1177/1550059416645980 74. Adams RA, Perrinet LU, Friston K. Smooth Pursuit and Visual Occlusion: Active Inference and Oculomotor Control in Schizophrenia. PLoS One. 2012;7(10):e47502. DOI: https://doi.org/10.1371/journal.pone.0047502 75. Friston K, et al. The dysconnection hypothesis. Schizophr Res. 2016;176(2–3):83–94. DOI: https://doi.org/10.1016/j.schres.2016.07.014 76. Corlett PR, et al. Hallucinations and Strong Priors. Trends Cogn Sci. 2019;23(2):114–27. DOI: https://doi.org/10.1016/j.tics.2018.12.001 77. Teufel C, et al. Shift toward prior knowledge confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals. Proc Natl Acad Sci U. S. A. 2015;112(43):13401–6. DOI: https://doi.org/10.1073/pnas.1503916112 78. Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3(2):89–97. 79. Stephan KE, Friston KJ, Frith CD. Dysconnection in Schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509–27. DOI: https://doi.org/10.1093/schbul/sbn176 80. Tkachenko AA, Demidova LYu. [Development of the general model of self-regulation in forensic psychiatry. Paper 2. Inner speech as a mechanism for recoding sense and meaning]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2018;(6):17–26. Russian.
DOI: http://dx.doi.org/10.24411/1560-957Х-2020-10504
Article Metrics
Metrics powered by PLOS ALM