Концепции уровневого нарушения регулятивных процессов при шизофрении: от вероятностного прогнозирования к прогностическому кодированию

Полный текст:
Читать

Рекомендуемое оформление библиографической ссылки:

Самылкин Д.В., Ткаченко А.А. Концепции уровневого нарушения регулятивных процессов при шизофрении: от вероятностного прогнозирования к прогностическому кодированию // Российский психиатрический журнал. 2020. №5. С. 34-46.

Аннотация

В научном обзоре с целью анализа научных представлений о закономерностях протекания регулятивных процессов при шизофрении прослежены различные патогенетические теории шизофрении – от попыток выделения «основного расстройства» до современных нейробиологических концепций. Показано, что в качестве основного звена в механизме развития психопатологической симптоматики, нейрофизиологических и патопсихологических феноменов (проявляющегося на разных уровнях организации психических процессов) может рассматриваться нарушение актуализации предыдущего опыта.

Ключевые слова саморегуляция; когнитивные нарушения; дизрегуляция салиенса; вероятностное прогнозирование; сопутствующий разряд; эфферентная копия; прогностическое кодирование; дисконнекция

Литература

1. Tkachenko AA. [The subject of forensic psychiatric examination and translational medicine]. Psihicheskoe zdorov'e [Mental Health]. 2016;(11):3–14. Russian. 2. Pavlov IP. Dvadcatiletnij opyt ob'ektivnogo izuchenija vysshej nervnoj dejatel'nosti (povedenija) zhivotnyh. Moscow; 1973. p. 370. Russian. 3. Meynen G. A neurolaw perspective on psychiatric assessments of criminal responsibility: Decision-making, mental disorder, and the brain. Int J Law Psychiatry. 2013;36(2):93–9. DOI: https://doi.org/10.1016/j.ijlp.2013.01.001 4. Spranger TM. International Neurolaw. A Comparative Analysis. In: International Neurolaw: A Comparative Analysis. Springer; 2012. 412 p. 5. Tkachenko AA, Demidova LYu. [Development of the general model of self-regulation in forensic psychiatry. Paper 1. The principle of isomorphism]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2018;(5):19–28. Russian. 6. Shmukler AB. Problema shizofrenii v sovremennyh issledovanijah: dostizhenija i diskussionnye voprosy. Moscow; 2011. 83 p. Russian. 7. Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr Res. 2009;110(1–3):1–23. DOI: https://doi.org/10.1016/j.schres.2009.03.005 8. Gold JM, et al. Forms of Memory Failure in Schizophrenia. J Abnorm Psychol. 1992;101(3):487–94. DOI: https://doi.org/10.1037//0021-843x.101.3.487 9. Fioravanti M, et al. A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychol Rev. 2005;15(2):73–95. DOI: https://doi.org/10.1007/s11065-005-6254-9 10. Gold S, et al. Longitudinal study of cognitive function in first-episode and recent-onset schizophrenia. Am J Psychiatry. 1999;156(9):1342–8. DOI: https://doi.org/10.1176/ajp.156.9.1342 11. Wright IC, et al. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry. 2000;157(1):16–25. DOI: https://doi.org/10.1176/ajp.157.1.16 12. Banaj N, et al. Cognitive and psychopathology correlates of brain white/grey matter structure in severely psychotic schizophrenic inpatients. Schizophr Res Cogn Elsevier. 2018;(12):29–36. DOI: https://doi.org/10.1016/j.scog.2018.02.001 13. Walterfang M, et al. White matter volume changes in people who develop psychosis. Br J Psychiatry. 2008;193(3):210–5. DOI: https://doi.org/10.1192/bjp.bp.107.043463 14. Burns J, et al. Structural disconnectivity in schizophrenia: A diffusion tensor magnetic resonance imaging study. Br J Psychiatry. 2003;(182):439–43. 15. Berman KF, Illowsky BP, Weinberger DR. Physiological Dysfunction of Dorsolateral Prefrontal Cortex in Schizophrenia: IV. Further Evidence for Regional and Behavioral Specificity. Arch Gen Psychiatry. 1988;45(7):616–22. DOI: https://doi.org/10.1001/archpsyc.1988.01800310020002 16. Andreasen NC, et al. Schizophrenia and cognitive dysmetria: A positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci U. S. A. 1996;93(18):9985–90. DOI: https://doi.org/10.1073/pnas.93.18.9985 17. Addington J, Addington D. Neurocognitive and social functioning in schizophrenia: a 2.5 year follow-up study. Schizophr Res. 2000;(44):47–56. DOI: https://doi.org/10.1016/s0920-9964(99)00160-7 18. Green MF, et al. Social cognition in schizophrenia: An NIMH workshop on definitions, assessment, and research opportunities. Schizophr Bull. 2008;34(6):1211–20. DOI: https://doi.org/10.1093/schbul/sbm145 19. Shmukler AB, Sjunjakov TS. [Cognitive disorders in patients with schizophrenia]. Sovremennaja Terapija Psihicheskih Rasstrojstv [Modern Therapy Of Mental Disorders]. 2018;(4):8–17. Russian. DOI: https://doi.org/10.21265/psyph.2018.47.21772 20. Green MF, Horan WP, Lee J. [Non-social and social cognitive functions in schizophrenia: current state and directions of development]. Vsemirnaja psihiatrija [World Psychiatry]. 2019;18(2):150–66. Russian. 21. Gurovich IJa, Shmukler AB, Zajceva JuS. Nejrokognitivnyj deficit i ego dinamika u bol'nyh na nachal'nyh jetapah shizofrenii i shizoaffektivnogo rasstrojstva. In: Nasledie A.R. Lurii v sovremennom nauchnom i kul'turno-istoricheskom kontekste. Moscow; 2012. p. 177–83. Russian. 22. Cohen JD, Servan-Schreiber D. Context, Cortex, and Dopamine: A Connectionist Approach to Behavior and Biology in Schizophrenia. Psychol Rev. 1992;99(1):45–77. DOI: https://doi.org/10.1037/0033-295x.99.1.45 23. Kapur S. Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160(1):13–23. DOI: https://doi.org/10.1176/appi.ajp.160.1.13 24. Jensen J, Kapur S. Salience and psychosis: Moving from theory to practise. Psychol Med. 2009;39(2):197–8. DOI: https://doi.org/10.1017/S0033291708003899 25. Van Os J. A salience dysregulation syndrome. Br J Psychiatry. 2009;194(2):101–3. DOI: https://doi.org/10.1192/bjp.bp.108.054254 26. Kronfeld A. Sovremennye problemy uchenija o shizofrenii. In: Stanovlenie sindromologii i koncepcija shizofrenii. Moscow; 2006. p. 452–505. Russian. 27. Bleuler E. Rukovodstvo po psihiatrii. Berlin; 1920. 542 p. Russian. 28. Zalmanzon AN. K voprosu ob osnovnom rasstrojstve pri shizofrenii. In: Trudy psihiatricheskoj kliniki I MMI. Moscow; 1934. Issue 5. p. 60–86. Russian. 29. Husserl E. Idei k chistoj fenomenologii. In: Tom 1. Obshhee vvedenie v chistuju fenomenologiju. Moscow: Akademicheskij Proekt; 1999. 336 p. Russian. 30. Kronfeld A. Problemy sindromologii i nozologii v sovremennoj psihiatrii. In: Stanovlenie sindromologii i koncepcija shizofrenii. Moscow; 2006. p. 37–221. Russian. 31. Berce J. Vychlenenie shizofrenicheskih pervichnyh simptomov. Nezavisimyj psihiatricheskij zhurnal [Independent Psychiatric Journal]. 2010;(4):44–54. Russian. 32. Tkachenko AA. [About the history of the creation of the pathopsychological concept of schizophrenia (to publish the early works of Yu. F. Polyakov)]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2014;(3):79–92. Russian. 33. Poljakov JuF. Patologija poznavatel'noj dejatel'nosti pri shizofrenii. Moscow; 1974. 168 p. Russian. 34. Bernshtejn NA. Ocherki po fiziologii dvizhenij i fiziologii aktivnosti. Moscow; 1966. 349 p. Russian. 35. Fejgenberg IM. Narushenie verojatnostnogo prognozirovanija pri shizofrenii. In: Shizofrenija i verojatnostnoe prognozirovanie. Moscow; 1973. p. 5–19. Russian. 36. Anohin PK. Ocherki po fiziologii funkcional'nyh sistem. Moscow; 1975. 447 p. Russian. 37. Von Holst E, Mittelstaedt H. Das Reafferenzprinzip. Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften. 1950;(37):464–76. 38. Sperry RW. Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol. 1950;43(6):482–9. 39. Helmholtz H. Treatise on Physiological Optics, III: The Perceptions of Vision. Science. 1925;61(1574):235–6. 40. Thaker GK, et al. Smooth pursuit eye movements to extraretinal motion signals: Deficits in relatives of patients with schizophrenia. Arch Gen Psychiatry. 1998;55(9):830–6. 41. Hong LE, Avila MT, Thaker GK. Response to unexpected target changes during sustained visual tracking in schizophrenic patients. Exp Brain Res. 2005;165(1):125–31. DOI: https://doi.org/10.1007/s00221-005-2276-z 42. Thakkar KN, Rolfs M. Disrupted Corollary Discharge in Schizophrenia: Evidence From the Oculomotor System. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(9):773–81. DOI: https://doi.org/10.1016/j.bpsc.2019.03.009 43. Polli FE, et al. Schizophrenia patients show intact immediate error-related performance adjustments on an antisaccade task. Schizophr Res. 2006;82(2–3):191–201. DOI: https://doi.org/10.1016/j.schres.2005.10.003 44. Thakkar KN, Diwadkar VA, Rolfs M. Oculomotor Prediction: A Window into the Psychotic Mind. Trends Cogn Sci. 2017;21(5):344–56. DOI: https://doi.org/10.1016/j.tics.2017.02.001 45. Sommer MA, Wurtz RH. What the Brain Stem Tells the Frontal Cortex. I. Oculomotor Signals Sent from Superior Colliculus to Frontal Eye Field Via Mediodorsal Thalamus. J Neurophysiol. 2004;91(3):1381–402. DOI: https://doi.org/10.1152/jn.00738.2003 46. Sommer MA, Wurtz RH. What the Brain Stem Tells the Frontal Cortex. II. Role of the SC-MD-FEF Pathway in Corollary Discharge. J Neurophysiol. 2004;91(3):1403–23. DOI: https://doi.org/10.1152/jn.00740.2003 47. Sherman SM. Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience. Nature Publishing Group. 2016;19(4):533–41. DOI: https://doi.org/10.1038/nn.4269 48. Yao B, et al. Structural thalamofrontal hypoconnectivity is related to oculomotor corollary discharge dysfunction in schizophrenia. J Neurosci. 2019;39(11):2102–13. DOI: https://doi.org/10.1523/JNEUROSCI.1473-18.2019 49. Frith CD. The positive and negative symptoms of schizophrenia reflect impairments in the perception and initiation of action. Psychol Med. 1987;17(3):631–48. DOI: https://doi.org/10.1017/s0033291700025873 50. Ford JM, et al. Synch before you speak: Auditory hallucinations in schizophrenia. Am J Psychiatry. 2007;164(3):458–66. DOI: https://doi.org/10.1176/ajp.2007.164.3.458 51. Ford JM, Roach BJ, Mathalon DH. Assessing corollary discharge in humans using noninvasive neurophysiological methods. Nat Protoc. 2010;5(6):1160–8. DOI: https://doi.org/10.1038/nprot.2010.67 52. Ford JM, et al. Out-of-Synch and Out-of-Sorts: Dysfunction of Motor-Sensory Communication in Schizophrenia. Biol Psychiatry. 2008;63(8):736–43. DOI: https://doi.org/10.1016/j.biopsych.2007.09.013 53. Feinberg I. Efference copy and corollary discharge: implications for thinking and its disorders. Schizophr Bull. 1978;4(4):636–40. DOI: https://doi.org/10.1093/schbul/4.4.636 54. Green MF, Kinsbourne M. Subvocal activity and auditory hallucinations: Clues for behavioral treatments? Schizophr Bull. 1990;16(4):617–25. DOI: https://doi.org/10.1093/schbul/16.4.617 55. Ford JM, Mathalon DH. Corollary discharge dysfunction in schizophrenia: Can it explain auditory hallucinations? Int J Psychophysiol. 2005;58(2–3):179–89. DOI: https://doi.org/10.1016/j.ijpsycho.2005.01.014 56. Barch DM, Dowd EC. Goal representations and motivational drive in schizophrenia: The role of prefrontal-striatal interactions. Schizophr Bull. 2010;36(5):919–34. DOI: https://doi.org/10.1093/schbul/sbq068 57. Cannon TD, et al. A prospective cohort study of neurodevelopmental processes in the genesis and epigenesis of schizophrenia. Dev Psychopathol. 1999;11(3):467–85. 58. Gallagher S. Ever since William James Philosophical conceptions of the self: implications for cognitive science. Trends Cogn Sci. 2000;4(1):14–21. 59. Van der Weiden A, Prikken M, van Haren NEM. Self-other integration and distinction in schizophrenia: A theoretical analysis and a review of the evidence. Neurosci Biobehav Rev. 2015;(57):220–37. DOI: https://doi.org/10.1016/j.neubiorev.2015.09.004 60. Moore JW, Fletcher PC. Sense of agency in health and disease: A review of cue integration approaches. Conscious Cogn. 2012;21(1):59–68. DOI: https://doi.org/10.1016/j.concog.2011.08.010 61. Feinberg I, Guazzelli M. Schizophrenia – A disorder of the corollary discharge systems that integrate the motor systems of thought with the sensory systems of consciousness. Br J Psychiatry. 1999;(174):196–204. DOI: https://doi.org/10.1192/bjp.174.3.196 62. Corlett PR, Frith CD, Fletcher PC. From drugs to deprivation: A Bayesian framework for understanding models of psychosis. Psychopharmacology (Berl). 2009;206(4):515–30. DOI: https://doi.org/10.1007/s00213-009-1561-0 63. Ford JM, Mathalon DH. Efference Copy, Corollary Discharge, Predictive Coding, and Psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4(9):764–7. DOI: https://doi.org/10.1016/j.bpsc.2019.07.005 64. Srinivasan MV, Laughlin SB, Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc. Ser B Biol Sci. 1982;(216):427–59. DOI: https://doi.org/10.1098/rspb.1982.0085 65. Rao RPN, Ballard DH. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2(1):79–87. DOI: https://doi.org/10.1038/4580 66. Friston K. Hierarchical models in the brain. PLoS Comput Biol. 2008;4(11):e1000211. DOI: https://doi.org/ https://doi.org/10.1371/journal.pcbi.1000211 67. Bastos AM, et al. Canonical Microcircuits for Predictive Coding. Neuron. 2012;76(4):695–711. DOI: https://doi.org/10.1016/j.neuron.2012.10.038 68. Friston K, Kilner J, Harrison LA. free energy principle for the brain. J Physiol. 2006;100(1–3):70–87. DOI: https://doi.org/10.1016/j.jphysparis.2006.10.001 69. Friston K. The free-energy principle: A unified brain theory? Nature Reviews Neuroscience. 2010;11(2):127–38. DOI: https://doi.org/10.1038/nrn2787 70. Friston K. A theory of cortical responses. Philos Trans R Soc. B Biol Sci. 2005;360(1456):815–36. DOI: https://doi.org/10.1098/rstb.2005.1622 71. Stephan KE, Baldeweg T, Friston KJ. Synaptic Plasticity and Dysconnection in Schizophrenia. Biol Psychiatry. 2006;59(10):929–39. DOI: https://doi.org/10.1016/j.biopsych.2005.10.005 72. Baldeweg T. Repetition effects to sounds: evidence for predictive coding in the auditory system.Trends Cogn Sci. 2006;10(3):93–4. DOI: https://doi.org/10.1016/j.tics.2006.01.010 73. Umbricht D, Krljesb S. Mismatch negativity in schizophrenia: A meta-analysis. Schizophr Res. 2005;76(1):1–23. DOI: https://doi.org/10.1177/1550059416645980 74. Adams RA, Perrinet LU, Friston K. Smooth Pursuit and Visual Occlusion: Active Inference and Oculomotor Control in Schizophrenia. PLoS One. 2012;7(10):e47502. DOI: https://doi.org/10.1371/journal.pone.0047502 75. Friston K, et al. The dysconnection hypothesis. Schizophr Res. 2016;176(2–3):83–94. DOI: https://doi.org/10.1016/j.schres.2016.07.014 76. Corlett PR, et al. Hallucinations and Strong Priors. Trends Cogn Sci. 2019;23(2):114–27. DOI: https://doi.org/10.1016/j.tics.2018.12.001 77. Teufel C, et al. Shift toward prior knowledge confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals. Proc Natl Acad Sci U. S. A. 2015;112(43):13401–6. DOI: https://doi.org/10.1073/pnas.1503916112 78. Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3(2):89–97. 79. Stephan KE, Friston KJ, Frith CD. Dysconnection in Schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509–27. DOI: https://doi.org/10.1093/schbul/sbn176 80. Tkachenko AA, Demidova LYu. [Development of the general model of self-regulation in forensic psychiatry. Paper 2. Inner speech as a mechanism for recoding sense and meaning]. Rossiiskii psikhiatricheskii zhurnal [Russian Journal of Psychiatry]. 2018;(6):17–26. Russian.



DOI: http://dx.doi.org/10.24411/1560-957Х-2020-10504

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM